Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 11004
Number of page(s) 5
Section Minisymposium: Physical and Numerical Modeling of Hydrate-Bearing Sediments (organized by Sheng Dai)
DOI https://doi.org/10.1051/e3sconf/202020511004
Published online 18 November 2020
  1. E. Sloan, C. Koh, Clathrate hydrates of natural gases CRC press (2007) [CrossRef] [Google Scholar]
  2. M. Max, A. Johnson, W. Dillon, Natural gas hydrate-arctic ocean deepwater resource potential Springer (2013) [CrossRef] [Google Scholar]
  3. V. Prasad and F. Kulacki, Convective heat transfer in a rectangular porous cavity-effect of aspect ratio on flow structure and heat transfer. J. Heat Tranf. 106 158-165 (1984) [CrossRef] [Google Scholar]
  4. O. Trevisan and A. Bejan, Natural convection with combined heat and mass transfer buoyancy effects in a porous medium. Int. J. Heat Mass Transf. 28 1597-1611 (1985) [Google Scholar]
  5. M. Kaviany, Principles of heat transfer in porous media. Springer Science & Business Media (2012) [Google Scholar]
  6. H. Kim, P. Bishnoi, R. Heidemann, S. Rizvi, Kinetics of methane hydrate decomposition. Chem. Eng. Sci. 42 1645-1653 (1987) [Google Scholar]
  7. X. Chen and D. Espinoza, Surface area controls gas hydrate dissociation kinetics in porous media. Fuel 234 358-363 (2018) [CrossRef] [Google Scholar]
  8. M. Thakur, D. Penumadu, C. Bauer, Capillary suction measurements in granular materials and direct numerical simulations using x-ray computed tomography microstructure. J. Geotech. Geoenviron. 146 04019121 (2020) [CrossRef] [Google Scholar]
  9. Z. Jarrar, R. Al-Raoush, J. Hannun, K. Alshibli, J. Jung, 3D synchrotron computed tomography study on the influence of fines on gas driven fractures in sandy sediments. Geom. Ener. Env. 100105 (2018) [Google Scholar]
  10. A. Herring, L. Andersson, D. Wildenschild, Enhancing residual trapping of supercritical CO2 via cyclic injections. Geophys. Res. Lett., 43 9677-9685 (2016) [Google Scholar]
  11. M. Sato, S. Takeya, J. Nagao, S. Jin, Y. Kamata, H. Minagawa, T. Ebinuma, H. Narita, Distribution of hydrate saturation ratios in artificial methane hydrate sediments measured by high-speed X-ray computerized tomography. Jpn. J. Appl. Phys. 44 473 (2005) [Google Scholar]
  12. L. Lei, Y. Seol, J. Choi, T. Kneafsey, Pore habit of methane hydrate and its evolution in sediment matrix–laboratory visualization with phase-contrast micro-CT. Mar. Petrol. Geol. 104 451-467 (2019) [CrossRef] [Google Scholar]
  13. M. Rivers, Developments in X-Ray Tomography X, SPIE (2016) [Google Scholar]
  14. Z. Jarrar, K. Alshibli, R. Al-Raoush, J. Jung, 3D measurements of hydrate surface area during hydrate dissociation in porous media using dynamic 3D imaging. Fuel 265, 116978 (2020) [CrossRef] [Google Scholar]
  15. K. Alshibli and Z. Jarrar, Four-dimensional dynamic synchrotron microcomputed tomography imaging of gas-water interface at high pressure and low temperature. Geotechnical Testing Journal 44-4, in press (2021) [CrossRef] [Google Scholar]
  16. M. Rivers, Developments in x-Ray tomography VIII International society for optics and photonics (2012) [Google Scholar]
  17. Avizo 9.7. FEI, Hillsboro, OR. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.