Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 11003
Number of page(s) 6
Section Minisymposium: Physical and Numerical Modeling of Hydrate-Bearing Sediments (organized by Sheng Dai)
DOI https://doi.org/10.1051/e3sconf/202020511003
Published online 18 November 2020
  1. IEA, https://www.iea.org/articles/global-co2-emissions-in-2019 (accessed 5 March 2020) [Google Scholar]
  2. IPCC, Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013) [Google Scholar]
  3. BP, BP Statistical Review of World Energy (London, 2019) [Google Scholar]
  4. IPCC, IPCC Special Report on Carbon Dioxide Capture and Storage (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2005) [Google Scholar]
  5. K. Ohgaki, Y. Inoue, A Proposal for Gas Storage on The Bottom of The Ocean Using Gas Hydrates, Int. Chem. Eng. 34, 417-419 (1994) [Google Scholar]
  6. E.D. Sloan, C.A. Koh, Clathrate Hydrates of Natural Gases, 3rd Edition (Taylor & Francis/CRC Press, Boca Raton, 2008) [Google Scholar]
  7. G. Ersland, J. Husebø, A. Graue, B. Kvamme, Transport and Storage of CO2 in Natural Gas Hydrate Reservoirs, Energy Procedia, 1, 3477-3484 (2009) [Google Scholar]
  8. B. Kvamme, A. Graue, T. Buanes, T. Kuznetsova, G. Ersland, Storage of CO2 in Natural Gas Hydrate Reservoirs and the Effect of Hydrate as An Extra Sealing in Cold Aquifers, Int. J. Greenh. Gas Con., 1, 236-246 (2007) [CrossRef] [Google Scholar]
  9. B. Kvamme, Feasibility of Simultaneous CO2 Storage and CH4 Production from Natural Gas Hydrate Using Mixtures of CO2 and N2, Can. J. Chem., 93, 897-905 (2015) [Google Scholar]
  10. A. Klar, S. Uchida, K. Soga, K. Yamamoto, Explicitly Coupled Thermal Flow Mechanical Formulation for Gas-Hydrate Sediments, SPE, 18, 196-206 (2013) [CrossRef] [Google Scholar]
  11. G. Chen, T. Guo, Thermodynamic Modeling of Hydrate Formation Based on New Concepts, Fluid Ph. Equilibria, 122, 43-65 (1996) [CrossRef] [Google Scholar]
  12. S. Fan, G. Chen, Q. Ma, T. Guo, Experimental and Modeling Studies on The Hydrate Formation of CO2 and CO2-Rich Gas Mixtures, Chem. Eng. J., 78, 173-178 (2000) [Google Scholar]
  13. V.A. Kamath, Study of Heat Transfer Characteristics during Dissociation of Gas Hydrates in Porous Media (Ph.D. dissertation, University of Pittsburgh, 1984) [Google Scholar]
  14. C. Deusner, N. Bigalke, E. Kossel, M. Haeckel, Methane Production from Gas Hydrate Deposits through Injection of Supercritical CO2, energies, 5, 2112-2140 (2012) [Google Scholar]
  15. S. Uchida, C. Deusner, A. Klar, M. Haeckel, Thermo-Hydro-Chemo-Mechanical Formulation for CH4-CO2 Hydrate Conversion Based on Hydrate Formation and Dissociation in Hydrate-Bearing Sediments, Geo-Chicago 2016 (2016) [Google Scholar]
  16. Y. Masuda, S. Naganawa, K. Fujita, K. Sato, Y. Hayashi, Modeling and Experimental Studies on Dissociation of Methane Gas Hydrates in Berea Sandstone Cores, ICGH3 (1999) [Google Scholar]
  17. S. Uchida, K. Soga, K. Yamamoto, Critical State Soil Constitutive Model for Methane Hydrate Soil, J. Geophys. Res. Solid Earth, 117 (2012) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.