Open Access
Issue
E3S Web Conf.
Volume 205, 2020
2nd International Conference on Energy Geotechnics (ICEGT 2020)
Article Number 11007
Number of page(s) 7
Section Minisymposium: Physical and Numerical Modeling of Hydrate-Bearing Sediments (organized by Sheng Dai)
DOI https://doi.org/10.1051/e3sconf/202020511007
Published online 18 November 2020
  1. J. L. H. Grozic, Interplay Between Gas Hydrates and Submarine Slope Failure. In Advances in Submarine Mass Movements and Their Consequences, 28 (2010) [Google Scholar]
  2. S. Uchida, J.S Lin, E.M. Myshakin, Y. Seol, R. Boswell, Numerical simulations of sand migration during gas production in hydrate-bearing sands interbedded with thin mud layers at site NGHP-02-16. J. Mar. Pet. Geol., 188:639-647 (2019) [CrossRef] [Google Scholar]
  3. J. Nimblett, R. Shipp, and F. Strijbos, Gas hydrate as a drilling hazard: Examples from global deep-water settings. Proceedings of Offshore Technology Conference (2005) [Google Scholar]
  4. S. Uchida, A. Klar, K. Yamamoto, and production model in gas hydrate-bearing sediments. Int. J. Rock Mechanics and Mining Sci., 86;303-316 (2016) [CrossRef] [Google Scholar]
  5. W. Waite, J. Santamarina, D. Cortes, B. Dugan, N. Espinoza et al., Physical properties of hydrate-bearing sediments. Reviews of Geophysics, 47 (2009) [CrossRef] [Google Scholar]
  6. B. Madhusudan, C. Clayton and J. Priest, The effects of hydrate on the strength and stiffness of some sands. J.G.R, 1(18) (2018) [Google Scholar]
  7. M.D. Max, A.H. Johnson, Exploration and Production of Oceanic Natural Gas Hydrate: Critical Factors for Commercialization. Springer International Publishing, 155 (2019) [Google Scholar]
  8. M. Hyodo, J. Yoneda, N. Yoshimoto and Y. Nakata, Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils and Foundations, 53(2):299-314 (2013) [CrossRef] [Google Scholar]
  9. D. Li, Q. Wu, Z. Wang, J. Lu, D. Liang, and X. Li, Tri-axial shear tests on hydrate-bearing sediments during hydrate dissociation with depressurization. Energies, 11:1819 (2018) [Google Scholar]
  10. R. Boswell, E. Myshakin, G. Moridis, Y. Konno, T.S. Collett, M. Reagan, T. Ajayi, Y. Seol, India National Gas Hydrate Program Expedition 02 summary of scientific results: Numerical simulation of reservoir response to depressurization. J. Mar. Pet. Geol., 108:154-166 (2019) [CrossRef] [Google Scholar]
  11. Y. Konno, A. Kato, J. Yoneda, M. Oshima, M. Kida, Y. Jin, J. Nagao, N. Tenma, J. Numerical Analysis of Gas Production Potential from a Gas-hydrate Reservoir at Site NGHP-02-16, the Krishna-Godovari Basin, Offshore India – Feasibility of Depressurization Method for Ultra-deepwater Environment. Mar. Pet. Geol., 108:731-740 (2018) [Google Scholar]
  12. J. Yoneda, M. Oshima, M. Kida, A. Kato, Y. Konno, Y. Jin, J. Jang, W.F. Waite, P. Kumar, N. Tenma, Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna–Godavari Basin, offshore India. J. Mar. Pet. Geol., 108:524-536 (2018) [CrossRef] [Google Scholar]
  13. J. Yoneda, A. Masui, Y. Konno, Y. Jin, M. Kida, J. Katagiri, J. Nagao, N. Tenma, Consolidation and hardening behavior of hydrate-bearing pressure-core sediments recovered from the Krishna–Godavari Basin, offshore India. J. Mar. Pet. Geol. 108, 512–523 (2018) [CrossRef] [Google Scholar]
  14. M. De La Fuente, J. Vaunat, H. Marín-Moreno, Thermo-Hydro-Mechanical Coupled Modeling of Methane Hydrate-Bearing Sediments: Formulation and Application. Energies, 12, 2178 (2018) [Google Scholar]
  15. M. De La Fuente, J. Vaunat, H. Marín-Moreno, A densification mechanism to model the mechanical effect of methane hydrates in sandy sediments. Int. J. Numer. Anal. Methods Geomech.,1–21 (2019) [Google Scholar]
  16. S. Olivella, A. Gens, J. Carrera, and E.E. Alonso, Numerical formulation for a simulator (code-bright) for the coupled analysis of saline media. Engineering Computations, 13(7):87-112 (1996) [Google Scholar]
  17. D. Y, Peng and D. B. Robinson, A new two-constant equation of state. Industrial and Engineering Chemistry Fundamentals, 1(15):59-64 (1976) [Google Scholar]
  18. P. Tishchenko, C. Hensen, K. Wallmann and C. S. Wong, Calculation of the stability and solubility of methane hydrate in seawater. Chemical Geology 219 (1-4); 37-52 (2005) [Google Scholar]
  19. H. Yu, CASM: a unified state parameter model for clay and sand. Int. J. Numer. Anal. Methods Geomech., 22(8):621-653 (1998) [Google Scholar]
  20. K. Hashiguchi, Subloading surface model in unconventional plasticity. J. Petroleum Sci. and Engineering, 25(8):917-945 (1989) [Google Scholar]
  21. Y. Nakata, Y. Kato, M. Hyodo, A.F.L Hyde, H. Murata, One-dimensional compression behaviour of uniformly graded sand related to single particle crushing strength. Soils Found. 41, 39–51 (2001) [CrossRef] [Google Scholar]
  22. J. A. Priest, A laboratory investigation into the seismic velocities of methane gas hydrate-bearing sand. J. G. R, 110(B4):1-13 (2005) [CrossRef] [Google Scholar]
  23. J. Kim, S. Dai, J. Jang, W.F. Waite, T.S. Collett, P. Kumar, Compressibility and particle crushing of Krishna-Godavari Basin sediments from offshore India: Implications for gas production from deep-water gas hydrate deposits, Marine and Petroleum Geology, 108:697-704 (2019) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.