Open Access
Issue
E3S Web Conf.
Volume 206, 2020
2020 2nd International Conference on Geoscience and Environmental Chemistry (ICGEC 2020)
Article Number 01027
Number of page(s) 9
Section Earth Geological Energy Mining And Landform Protection
DOI https://doi.org/10.1051/e3sconf/202020601027
Published online 11 November 2020
  1. Rossetti, D.F.,Márcio M. Valeriano (2007) Evolution of the lowest amazon basin modeled from the integration of geological and srtm topographic data. CATENA, 70(2), 0-265 [Google Scholar]
  2. Bailey, J.E., Self, S., Wooller, L.K., & Mouginis-Mark, P.J. (2007) Discrimination of fluvial and eolian features on large ignimbrite sheets around la pacana caldera, chile, using landsat and srtm-derived dem. Remote Sensing of Environment, 108(1), 24-41 [Google Scholar]
  3. Schumann, G., Matgen, P., Cutler, M.E. J., Black, A., Hoffmann, L., Pfister, L. (2008) Comparison of remotely sensed water stages from lidar, topographic contours and srtm. ISPRS Journal of Photogrammetry and Remote Sensing, 63(3), 283-296 [Google Scholar]
  4. Bolch, T., Yao, T., Kang, S., Buchroithner, M.F., Scherer, D., Maussion, F., Huintjes, E., and Schneider, C. (2010) A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976–2009, The Cryosphere, 4, 419-433 [Google Scholar]
  5. Rodriguez, E., Morris, C.S., and Belz, J.E. (2006) A global assessment of the SRTM performance. Photogrammetric Engineering and Remote Sensing, 72(3), 249-260 [CrossRef] [Google Scholar]
  6. Hayakawa, Y.S., Oguchi, T., & Lin, Z., (2008) Comparison of new and existing global digital elevation models: aster g-dem and srtm-3. Geophysical Research Letters, 35(17), L17404 [Google Scholar]
  7. Hirt, C., Filmer, M.S., & Featherstone, W.E. (2010) Comparison and validation of the recent freely available aster-gdem ver1, srtm ver4.1 and geodata dem-9s ver3 digital elevation models over australia. Australian Journal of Earth Sciences, 57(3), 337-347 [Google Scholar]
  8. Zhan, L., Tang, G.-a., and Yang, X. (2010) Evaluation of SRTM DEMs Elevation Accuracy: A Case Study in Shaanxi Province, Geography and Geo-Information Science, 26(1), 34-36 [Google Scholar]
  9. Hengl, T., Reuter, H. (2011) How accurate and usable is gdem? a statistical assessment of gdem using lidar data, Geomorphometry. (http://geomorphometry.org/HenglReuter2011, accessed on 2011-02-25) [Google Scholar]
  10. Huang, X., Xie, H., Liang, T., & Yi, D. (2011) Estimating vertical error of srtm and map-based dems using icesat altimetry data in the eastern tibetan plateau. INTERNATIONAL JOURNAL OF REMOTE SENSING, 32(18), 5177-5196 [Google Scholar]
  11. Hvidegaard, S.M., Sandberg S, Rensen, L., Forsberg, René (2012) Aster gdem validation using lidar data over coastal regions of Greenland. Remote Sensing Letters, 3(1), 85-91 [Google Scholar]
  12. Zhao, S., Cheng, W., Zhou, C., Chen, X., Zhang, S., & Zhou, Z., et al. (2011) Accuracy assessment of the aster gdem and srtm3 dem: an example in the loess plateau and north china plain of china, International Journal of Remote Sensing, 32(23), 8081-8093 [Google Scholar]
  13. Wang, W., Yang, X., and Yao, T. (2012) Evaluation of aster gdem and srtm and their suitability in hydraulic modelling of a glacial lake outburst flood in southeast tibet. Hydrological Processes, 26(2), 213-225 [Google Scholar]
  14. Gorokhovich, Y., Voustianiouk, A. (2006) Accuracy assessment of the processed srtm-based elevation data by cgiar using field data from usa and Thailand and its relation to the terrain characteristics. Remote Sensing of Environment, 104(4), 409-415 [Google Scholar]
  15. Antonios Mouratidis, Pierre Briole, Kostas Katsambalos, Srtm 3″dem (versions 1, 2, 3, 4) validation by means of extensive kinematic gps measurements: a case study from north Greece. International Journal of Remote Sensing. 2010, 31(23) [Google Scholar]
  16. DU Xiao-ping, GUO Hua-dong, FAN Xiang-tao, et al., Vertical Accuracy Assessment of SRTM and ASTER GDEM over Typical Regions of China Using ICESat/GLAS. Earth Science-Journal of China University of Geosciences. 2013, 38(4):887-897 [Google Scholar]
  17. Gao Zhiyuan, Xie Yuanli1, Wang Ninglian, et al. (2019) Response of Three Global DEM Data Accuracy to Different Terrain Factors in Qinghai- Tibet Plateau, 39(2):184-191 [Google Scholar]
  18. Wang, Y., Chen, X., Bo, Y., and Li, X. (2010) Monitoring glacier volume change based on multisource DEM and multi-temporal remote sensing images—a case study in the mount Naimona’nyi region on the TP. J. Glaciol. Geocryol, 32(1), 126-132 [Google Scholar]
  19. Tian, B., Wang, L., & Koike, K. (2011) Spatial statistics of surface roughness change derived from multi-scale digital elevation models. Procedia Environmental Sciences, 7, 0-257 [Google Scholar]
  20. Gao, T., Kang, S., Krause, P., Cuo, L., & Nepal, S. (2012) A test of j2000 model in a glacierized catchment in the central tibetan plateau. Environmental Earth Sciences, 65(6), 1651-1659 [Google Scholar]
  21. Fu, P., Heyman, J., H?Ttestrand, C., Stroeven, A.P., & Harbor, J.M. (2012) Glacial geomorphology of the shaluli shan area, southeastern tibetan plateau. Journal of Maps, 8(1), 48-55 [Google Scholar]
  22. WAN Jie, LIAO Jingjuan, XU Tao, et al. (2015) Accuracy evaluation of SRTM data based on ICESat/GLAS altimeter data: A case study in the Tibetan Plateau. REMOTE SENSING FOR LAND & RESOURCES, 27(1): 100-105 [Google Scholar]
  23. Farr, T.G., Paul, A.R., Edward, C., Robert, C., Riley, D., Scott, H., Michael, K.,Mimi, P., Ernesto, R., Ladislav, R., David, S., Scott, S., Joanne, S., Jeffrey, U.,Marian, W., Michael, O., Douglas, B. and Douglas, A. (2007) The shuttle radartopography mission. Reviews of Geophysics, 45, RG2004 [Google Scholar]
  24. Rabus, B., Eineder, M., Roth, A., Bamler, R. (2013) The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS Journal of Photogrammetry and Remote Sensing, 57(4), 241-262 [Google Scholar]
  25. Smith and Bridget (2003) Accuracy and resolution of shuttle radar topography mission data. Geophysical Research Letters, 30(9), 1467 [Google Scholar]
  26. Aster (2009) ASTER Global DEM Validation - Summary Report (Prepared by ASTER GDEM METI/ERSDAC NASA/LPDAAC USGS/EROS), (June 2009), 28 [Google Scholar]
  27. Hai-Rong, G., Wen-Hai, J., Yuan-Xi, Y. (2004) The systematic difference and its distribution between the 1985 national height datum and the global quasigeoid. Acta Geodaetica Et Cartographic Sinica [Google Scholar]
  28. Deng, Y., Wilson, J.P., & Bauer, B.O. (2007) Dem resolution dependencies of terrain attributes across a landscape. International Journal of Geographical Information Systems, 21(2), 27 [Google Scholar]
  29. Racoviteanu, A.E., Manley, W.F., Arnaud, Y., & Williams, M.W. (2007) Evaluating digital elevation models for glaciologic applications: an example from nevado coropuna, peruvian andes. Global and Planetary Change, 59(1-4), 0-125 [Google Scholar]
  30. Tachikawa, T., Kaku, M., Iwasaki, A., Gesch, D., Oimoen, M., & Zhang, Z., et al. (2011) Aster global digital elevation model version 2-summary of validation results. Kim Fakultas Sastra Dan Budaya [Google Scholar]
  31. Huadong Guo, Yun Shao, ChangLin Wang, et al. (2000) Theories and Application of Radar for Earth Observation. Science Press, Beijing, China [Google Scholar]
  32. Eineder, M., & Holzner, Jürgen (200) Interferometric DEMs in Alpine Terrain – Limits and Options for ERS and SRTM. IEEE International Geoscience & Remote Sensing Symposium, IEEE [Google Scholar]
  33. Rignot, E., Echelmeyer, K., & Krabill, W. (2001) Penetration depth of interferometric synthetic‐aperture radar signals in snow and ice. Geophysical Research Letters, 28(18) [Google Scholar]
  34. Grohmann, C.H., & Steiner, S.S. (2006) Srtm resample with short distance‐low nugget kriging. International Journal of Geographical Information Science, 22(8), 895-906 [CrossRef] [Google Scholar]
  35. Reuter, H.I., Nelson, A., Strobl, P., Mehl, W., & Jarvis, A. (2010) A first assessment of Aster GDEM tiles for absolute accuracy, relative accuracy and terrain parameters. Geoscience & Remote Sensing Symposium. IEEE, 240-243 [Google Scholar]
  36. Yan-Chao Y., Shu-Wen Z., Shu-Ping Y. (2008) Evaluation of srtm data quality in area of undulating hills of northeast china, Journal of the GraduateSchool of the Chinese Academy of Sciences, 25(1), 41-46 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.