Open Access
Issue |
E3S Web Conf.
Volume 206, 2020
2020 2nd International Conference on Geoscience and Environmental Chemistry (ICGEC 2020)
|
|
---|---|---|
Article Number | 02012 | |
Number of page(s) | 5 | |
Section | Earth Climate Change And Environmental Chemical Pollution Control | |
DOI | https://doi.org/10.1051/e3sconf/202020602012 | |
Published online | 11 November 2020 |
- M. Xiao, M. Li, & C.S. Reynolds, Colony formation in the cyanobacterium microcystis. Biological Reviews, 93(3). (2018) [Google Scholar]
- Y. Oyama, B. Matsushita, & T. Fukushima, Distinguishing surface cyanobacterial blooms and aquatic macrophytes using landsat/tm and etm+ shortwave infrared bands. Remote Sensing of Environment, 157, 35-47. (2015) [Google Scholar]
- C.A. Weirich, & T.R. Miller, Freshwater harmful algal blooms: toxins and children\”s health. Current Problems in Pediatric and Adolescent Health Care, 44(1), 2-24. (2014) [Google Scholar]
- P.W. Perschbacher, & G.M. Ludwig, Effects of diuron and other aerially applied cotton herbicides and defoliants on the plankton communities of aquaculture ponds. Aquaculture, 233(1-4), 197-203. (2003) [Google Scholar]
- E. Costas, & V. Lopez-Rodas, Copper sulphate and DCMU-herbicide treatments increase asymmetry between sister cells in the toxic cyanobacteria Microcystis aeruginosa: Implications for detecting environmental stress. Water research, 40(12), 2447-2451. (2006) [Google Scholar]
- D. Jančula, & B. Maršálek, Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere, 85(9), 1415-1422. (2011) [Google Scholar]
- C. Zhang, Y.L. Yi, K. Hao, G.L. Liu, & G.X. Wang, Algicidal activity of Salvia miltiorrhiza Bung on Microcystis aeruginosa—Towards identification of algicidal substance and determination of inhibition mechanism. Chemosphere, 93(6), 997-1004. (2013) [Google Scholar]
- S. Nakai, Y. Inoue, M. Hosomi, & A. Murakami, Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa. Water Research, 34(11), 3026-3032. (2000) [Google Scholar]
- Y. Hong, H.Y. Hu, X. Xie, A. Sakoda, M. Sagehashi, F.M. Li, Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aquat. Toxicol. 91, 262-269. (2008) [Google Scholar]
- M. Prabaharan, Bioactivity of Chitosan Derivative. Springer International Publishing. (2014) [Google Scholar]
- M. Dumont, R. Villet, M. Guirand, A. Montembault, T. Delair, S. Lack, M. Barikosky, A. Crepet, P. Alcouffe, F. Laurent, L. David, Processing and antibacterial properties of chitosan-coated alginate fibers. Carbohydrate Polymers, 190, 31-42. (2018) [Google Scholar]
- S.H. Duan, M.Y. Zhang, X.L. Cao, J.G. Cao, Z.Z. Yang, & H.L. Liu, Study on Allelopathic Inhibition of Chinese Herbal Extracts on Microcystis aeruginosa. Water Supply and Drainage, (4), 14. (2018) [Google Scholar]
- Z. Wang, D. Li, G. Li, Y. Liu, Mechanism of photosynthetic response in Microcystis aeruginosa PCC7806 to low inorganic phosphorus. Harmful Algae, 9(6):613-619. (2010) [Google Scholar]
- M.P. Padgett, D.W. Krogmann, Large scale preparation of pure phycobiliproteins. Photosynthesis Research, 11(3):225-235. (1987) [Google Scholar]
- M.M. Bradford, A rapid and sensitive method for the quantitation of protein utilizing the principle of protein-dye binding. Academic Press, 72(s 1– 2):248-254. (1976) [Google Scholar]
- X. Hou, J. Huang, J. Tang, N. Wang, L. Zhang, L. Gu, Y. Sun, Z. Yang, & Y. Huang, Allelopathic inhibition of juglone (5-hydroxy-1, 4-naphthoquinone) on the growth and physiological performance in Microcystis aeruginosa. Journal of environmental management, 232, 382-386. (2019) [Google Scholar]
- C.T. Shiu, T.M. Lee, Ultraviolet-B-induced oxidative stress and responses of the ascorbate– glutathione cycle in a marine macroalga Ulva fasciata. Journal of Experimental Botany. 56, 2851-2865. (2005) [Google Scholar]
- P. Meng, H. Pei, W. Hu, Z. Liu, X. Li, & H. Xu, Allelopathic effects of Ailanthus altissima extracts on Microcystis aeruginosa growth, physiological changes and microcystins release. Chemosphere, 141, 219-226. (2015) [Google Scholar]
- Y. Wu, P.G. Kerr, Z. Hu, & L. Yang, Removal of cyanobacterial bloom from a biopond–wetland system and the associated response of zoobenthic diversity. Bioresource technology, 101(11), 3903-3908. (2009) [Google Scholar]
- H.Y. Pei, C.X. Ma, W.R. Hu, & F. Sun, The behaviors of Microcystis aeruginosa cells and extracellular microcystins during chitosan flocculation and flocs storage processes. Bioresource technology, 151, 314-322. (2014) [Google Scholar]
- D.R.D. Figueiredo, U.M. Azeiteiro, S.M. Esteves, F.J.M. Gonçalves, & M.J. Pereira, Microcystin-producing blooms—a serious global public health issue. Ecotoxicology & Environmental Safety. 59(2), 151-163. (2004) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.