Open Access
E3S Web Conf.
Volume 207, 2020
25th Scientific Conference on Power Engineering and Power Machines (PEPM’2020)
Article Number 01027
Number of page(s) 17
Section Thermal Equipment, Heat and Mass Transfer Processes
Published online 18 November 2020
  1. A. Prag., The IEA Sustainable Development Scenario. Katowice, (6 December 2018); [Google Scholar]
  2. IRENA, Renewable capacity highlights 31 March 2019. [Google Scholar]
  3. D. O. Akinyele, R.K. Rayudu. Review of energy storage technologies for sustainable power networks. Sustainable Energy Technologies and Assessments 8 (2014) 74–91. [CrossRef] [Google Scholar]
  4. M. Finkenrath, S Pazzi, M. D’Ercole, R. Marquardt, P. Moser, M. Klafki, S. Zunft. Status and Technical Challenges of Advanced Compressed Air Energy Storage (CAES) Technology. (2009) International Workshop on Environment and Alternative Energy. [Google Scholar]
  5. IEA: Tracking clean energy progress 2017: Energy technology perspectives (2017) (2017). Available at: ogress2017.pdf [Google Scholar]
  6. P. Hutchins, U.S. utility-scale battery storage power capacity to grow substantially by 2023. July 10, (2019). [Google Scholar]
  7. J. F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, D. R. Rolison. Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion Science (28 Apr 2017): Vol. 356, Issue 6336, pp. 415-418 [Google Scholar]
  8. L. Kong, Chuan Li, Jiuchun Jiang and Michael G. Pecht. Li-Ion Battery Fire Hazards and Safety Strategies. Energies (2018), 11(9), 2191; [Google Scholar]
  9. M. Geyer, S. Freund. Webinar on Carnot Batteries. (2019) [Google Scholar]
  10. D. Stevanovic, High Temperature Energy Storage (HiTES) with Pebble Heater Technology and Gas Turbine. In Book Advancements in Energy Storage Technologies. (May 2018). [Google Scholar]
  11. L. Meroueh, G. Chen. Thermal energy storage radiatively coupled to a supercritical Rankine cycle for electric grid support. Renewable Energy. Volume 145, (January 2020), Pages 604-621 [Google Scholar]
  12. A. Thess, Thermodynamic Efficiency of Pumped Heat Electricity Storage. PHYSICAL REVIEW LETTERS. American Physical Society. (September 2013). [Google Scholar]
  13. R. B. Laughlin, Pumped thermal grid storage with heat exchange. Journal of Renewable and Sustainable Energy 9, 044103 (2017); [CrossRef] [Google Scholar]
  14. I. N. Kessides, The future of the nuclear industry reconsidered: Risks, uncertainties, and continued promise. Energy Policy, 48 (2012), pp. 185-208; [Google Scholar]
  15. J. Vujic, R. M. Bergmann, R. Skoda, M. Miletic. Small modular reactors: Simpler, safer, cheaper? Energy, Volume 45, Issue 1, (September 2012), Pages 288–295. [Google Scholar]
  16. Z. Liu, J. Fan. Technology readiness assessment of Small Modular Reactor (SMR) designs. Progress in Nuclear Energy, 70 (2014), pp. 20-28. [Google Scholar]
  17. C. Colbert, Overview of NuScale Design. Technical Meeting on Technology Assessment of SMRs for Near-Term Deployment Chengdu, China, (September 2-4, 2013). [Google Scholar]
  18. J. N. Reyes, Introduction to NuScale Design. NuScale Power Inc. July 24, (2008). U.S. Nuclear Regulatory Commission. [Google Scholar]
  19. S. Nisan, P. Raymond, G-M. Gautier, J-F. Pignate. Requirements and specifications for a simplified, low pressure medium sized PWR. Proceedings of the International Conference: Nuclear option in countries with small and medium electricity grid. Last accessed: March, 2017 [Google Scholar]
  20. D. Popov, B. Neykov. I Innovative PWR plant design concept with low primary circuit pressure. International Conference on Innovative Technologies for Nuclear Fuel Cycles and Nuclear Power, (23-26 June 2003) Vienna, Austria. [Google Scholar]
  21. G. M. Gautier, M. S. Chenaud, B Tourniaire. SCOR 1000: An economic and innovative conceptual design PWR. Proceedings of ICAPP ’07 Nice, FRANCE, (May 13-18, 2007), Paper 7417. Last accessed: March, 2017 [Google Scholar]
  22. Carnot Batteries. International Energy Agency. DLR. und_document-V2.pdf [Google Scholar]
  23. Alexandra von Meier, Electric Power Systems: A Conceptual Introduction. July 2006 Wiley-IEEE Press. [Google Scholar]
  24. Chromalox. Precision Heat and Control Systems For Solar Power Energy Production. [Google Scholar]
  25. R. L. Dunn, P. J. Hearps, M. N. Wright. Molten-Salt Power Towers: Newly Commercial Concentrating Solar Storage. Proceedings of the IEEE | Vol. 100, No. 2, (February 2012). https://DOI:10.1109/JPROC.2011.2163739 [Google Scholar]
  26. D. J. McCormick and W. P. Gorzegno, The separately fired super-heater - a nuclear application at Indian Point. ASME Paper 65-PWR-14, ASME-IEEE National Power Conference, Albany, New York, (Sept. 19-22, 1965); [Google Scholar]
  27. M.A. Darwish, Fatimah M. Al Awadhi, Anwar O. Bin Amer. Combining the nuclear power plant steam cycle with gas turbines. Energy, Volume 35, Issue 12, (December 2010), Pages 4562–4571 [Google Scholar]
  28. D. Popov, A. Borissova. Innovative configuration of a hybrid nuclear-solar tower power plant. Energy. Volume 125, (15 April 2017), Pages 736-746. [Google Scholar]
  29. P. Denholm, J. C. King, C. F. Kutcher, P. H. Wilson. Decarbonizing the electric sector: Combining renewable and nuclear energy using thermal storage. Energy Policy, Volume 44, (May 2012), Pages 301-311. [Google Scholar]
  30. C. Forsberg. Hybrid systems to address seasonal mismatches between electricity production and demand in nuclear renewable electrical grids. Energy Policy. Volume 62, (November 2013), Pages 333-341 ; [Google Scholar]
  31. M. Green, P. Sabharwall, M. Mckellar, Su-Jong Yoon, C. Abel, B. Petrovic, D. Curtis, “Nuclear Hybrid Energy System: Molten Salt Energy Storage,” Report INL/EXT-13-31768, Idaho National Laboratory (November 2013); [Google Scholar]
  32. D. Kearney, B. Kelly, R. Cable, N. Potrovitza. Overview on use of a Molten Salt HTF in a Trough Solar Field. NREL Parabolic Trough Thermal Energy Storage Workshop Golden, CO, (February 20-21, 2003); [Google Scholar]
  33. “Electric Resistance Heating - Department of Energy”. [Google Scholar]
  34. Z. Ma, G. C. Glatzmaier, M. Wagner, T. Neises. General Performance Metrics and Applications to Evaluate Various Thermal Energy Storage Technologies. Proceedings of the ASME 2012 6th International Conference on Energy Sustainability, ES2012, (July 23-26, 2012), San Diego, CA, USA; [Google Scholar]
  35. C. S. Turchi, M. Boyd, D. Kesseli, P. Kurup, M. Mehos, T. Neises, P. Sharan, M. Wagner, T. Wendelin. (2019). CSP Systems Analysis - Final Project Report. Golden, CO, USA: National Renewable Energy Laboratory. NREL/TP-5500-72856, May 2019. [CrossRef] [Google Scholar]
  36. P. Griffin, K. Huschka, G. Morin, G., (2009). Software for design, simulation and cost estimation of solar thermal power and heat cycles. Proceedings of the SolarPACES 2009 Conference in Berlin, Germany. [Google Scholar]
  37. A. Borissova, D. Popov. An option for the integration of solar photovoltaics into small nuclear power plant with thermal energy storage. Sustainable Energy Technologies and Assessments. Volume 18, (December 2016), Pages 119-126 [CrossRef] [Google Scholar]
  38. J. Jorgenson, P. Denholm, M Mehos, C Turchi. Estimating the performance and economic value of multiple concentrating solar power technologies in a production cost model. Technical Report NREL/TP-6A20-58645, (December 2013). [Google Scholar]
  39. Demand response and energy efficiency roadmap: maximizing preferred resources. Folsom, California: California Independent System Operator; (2013) [Google Scholar]
  40. R. Andrews. The California Duck Curve isn’t confined to California. Energy Matters. (November 15, 2017). [Google Scholar]
  41. P. Denholm, M. O’Connell, G. Brinkman, J. Jorgenson. Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart. Technical Report NREL/TP-6A20-65023. (November 2015). [CrossRef] [Google Scholar]
  42. X. Ju, C. Xu, Y.Q. Hu, X. Han, G.S. Wei, X.Z. Du. A review on the development of photovoltaic/concentrated solar power (PV-CSP) hybrid systems. Solar Energy Materials and Solar Cells Volume 161, (March 2017), Pages 305-327. [CrossRef] [Google Scholar]
  43. Cost and Performance Data for Power Generation Technologies. Cost report Prepared for the National Renewable Energy Laboratory. Black & Veatch Corporation (2012). [Google Scholar]
  44. R. Fu, T. Remo, R. Margolis. (2018) U.S. Utility-Scale Photovoltaics Plus-Energy Storage System Costs Benchmark. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-71714. [Google Scholar]
  45. U.S. Battery Storage Market Trends. U.S. Energy Information Administration. (May 2018) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.