Open Access
E3S Web Conf.
Volume 209, 2020
ENERGY-21 – Sustainable Development & Smart Management
Article Number 02007
Number of page(s) 7
Section Session 1. Towards Intelligent Energy Systems
Published online 23 November 2020
  1. H.M. Trent, Isomorphism between oriented linear graphs and lumped physical system, J. Acoustic America, 5, 500-527, (1955). [CrossRef] [Google Scholar]
  2. V.V. Berdnikov, Applied theory of hydraulic circuits, Moscow: Mashinostroenie, 192, (1977).(in Russian) [Google Scholar]
  3. M.A. Mamontov, The theory of analogy, Moscow: Mashinostroenie, 65, (1966). (in Russian) [Google Scholar]
  4. M. Geidl, G. Koeppel, P. Favre-Perrod, B. Klöckl, G. Andersson, K. Fröhlich, Energy hubs for the future, IEEE Power Energy Mag., 5(1), 24-30, (2007). [Google Scholar]
  5. D.N. Efimov, D.M. Bykov, Load-flow model of a multi-energy system, E3S Web of Conferences, 139 (2019), Rudenko International Conference “Methodological problems in reliability study of large energy systems” (RSES 2019), Tashkent, Uzbekistan, September 23-27, 2019 / N. Voropai, S. Senderov, A. Michalevich and H. Guliev (Eds.), 5 [CrossRef] [EDP Sciences] [Google Scholar]
  6. S.Y.e. Saukh, Investigation of energy circuits using numerical operator methods, Abstract dis. Doctor of Technical Science, 31, (1992). (in Russian) [Google Scholar]
  7. S.Y.e. Saukh, Mathematical modeling of energy circuits, Electronic Modeling, 33(3), 3-12, (2011). (in Russian) [Google Scholar]
  8. X. Zhang, G.G. Karady, K.R. Piratla, S.T. Ariaratnam, Network capacity assessment of combined heat and power-based distributed generation in urban energy infrastructures, IEEE Trans. on Smart Grid, 4(4), 2131-2138, (2013). [CrossRef] [Google Scholar]
  9. M. Chaudry, N. Jenkins, G. Strbac, Multi-time period combined gas and electricity network optimization, Electric Power Systems Research, 78(7), 1265-1279, (2008). [CrossRef] [Google Scholar]
  10. M. Moeini-Aghtaie, A. Abbaspour, M. Fotuhi-Firuzabad, E. Hajipour, A decomposed solution to multiple-energy carriers optimal power flow, IEEE Trans. on Power System, 29(2), 707-716, (2014). [CrossRef] [Google Scholar]
  11. A. Parisio, C. Del Vecchio, G. Velotto, Robust optimization of operations in energy hub, 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, 4943-4948, (2011). [Google Scholar]
  12. N.I. Voropai, V.A. Stennikov, E.A. Barakhtenko, O.N. Voitov, I.V. Postnikov, A model for control of a steady state of intelligent integrated energy system, Energy Systems Research, 1(1), 57-66, (2018). [Google Scholar]
  13. T. Alinjak, I. Pavic, K. Trupinic, Improved three-phase power flow method for calculation of power losses in unbalanced radial distribution network, CIRED, Open Access Proc. J., 1, 2361-2365, (2017). [CrossRef] [Google Scholar]
  14. C. Liu, B. Wang, X. Xu, K. Sun, D. Shi, C.L. Bak, A multi-dimensional holomorphic embedding method to solve AC power flows, IEEE Access, 5, 25270-25285, (2017). [Google Scholar]
  15. J. Luo, L. Shi, Y. Ni, A solution of optimal power flow incorporating wind generation and power grid uncertainties, IEEE Access, 6, 19681-19690, (2018). [Google Scholar]
  16. A. Martinez-Mares, C.R. Fuerte-Esquivel, A unified gas and power flow analysis in natural gas and electricity coupled networks, IEEE Trans. on Power Systems, 27(4), 2156-2166, (2012). [CrossRef] [Google Scholar]
  17. E.A. Mikhailovsky, N.N. Novitsky, Modified method of nodal pressures for calculating flow distribution in hydraulic circuits with unconventional closing ratios, Scientific and technical bulletin of SPbSPU, Physics and mathematics, 2(218), 30-42, (2015). (in Russian) [Google Scholar]
  18. E. Bompard, E. Carpaneto, G. Chicco, R. Napoli, Convergence of the backward/forward sweep method for the load-flow analysis of radial distribution systems, International Journal of Electrical Power and Energy Systems, 22(7), 521-530, (2000). [CrossRef] [Google Scholar]
  19. V.I. Idelchik, Electric systems and grids: Textbook for universities, Moscow: Energoatomizdat, 592, (1989). (in Russian) [Google Scholar]
  20. V.E. Vorotnitsky, Yu.S. Zhelezko, V.N. Kazantsev, e.a, Electricity losses in electrical grids of power systems, V.N. Kazantsev (Ed.), Moscow: Energoatomizda, 368, (1983). (in Russian) [Google Scholar]
  21. G.E. Pospelov, N.D. Sych, Power and energy losses in electrical grids, G.E. Pospelov (Ed.), Moscow: Energoizdat, 216, (1981). (in Russian) [Google Scholar]
  22. P.J. Mago, L.M. Chamra, Analysis and optimization of CCHP systems based on energy, economical, and environmental considerations, Energy and Buildings, 41, 1099-1106, (2009). [Google Scholar]
  23. E.A. Barahtenko, O.N. Voytov, N.I. Voropai, V.A. Stennikov, Hierarchical modeling of integrated energy systems, N.I. Voropai, V.A. Stennikov, S.M. Senderov, Hierarchical modeling of energy systems, N.I. Voropai, V.A. Stennikov (Eds), Novosibirsk: Publishing house “Geo”, (2020). (in Russian) (to be published) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.