Open Access
E3S Web Conf.
Volume 209, 2020
ENERGY-21 – Sustainable Development & Smart Management
Article Number 03025
Number of page(s) 6
Section Session 2. Advanced Energy Technologies: Clean, Resource-Saving, and Renewable Energy
Published online 23 November 2020
  1. G. Olkhovsky, A. Tumanovsky, “Heat power technologies in the period up to 2030,” Izvestia RAN. Energy, № 6. pp. 79-94, 2008. DOI: 10.31857/S0002331020020120. [Google Scholar]
  2. O. Favorsky, V. Polishchuk, “The choice of the thermal scheme and the profile of the domestic powerful energy gas turbine plant of the new generation and the CCGT based on it,” Teploenergetika, № 2. pp. 2-7, 2010. DOI: 10.1134/S0040601510020011. [Google Scholar]
  3. Y.S.H. Najjar, “Gas turbine cogeneration systems: a review of some novel cycles,” Appl. Ther. Engineering, pp. 179-197, 2000. DOI: 10.1016/S1359-4311(99)00019-8. [CrossRef] [Google Scholar]
  4. M. Bade, S. Bandyopadhyay, “Analysis of gas turbine integrated cogeneration plant: process integration approach,” Appl. Ther. Engineering, pp. 118-128, 2015. DOI: 10.1016/j.applthermaleng.2014.12.024. [CrossRef] [Google Scholar]
  5. Teemu Tolvo, “Flue gas condensing and scrubbing: a winning combination,” Modern Power Systems, Global Trade Media Ltd, Kent, UK, vol. 35, № 3, 2015. [Google Scholar]
  6. A. Kler, N. Decanova, S. Skripkin, Mathematical Modeling and Optimization in the Tasks of Operational Management of Thermal Power Plants. Nauka. Novosibirsk, p. 120, 1997. [Google Scholar]
  7. A. Kler, N. Decanova, E. Tyurina, Thermal Systems, Optimization Research. Novosibirsk, p. 236, 2005. [Google Scholar]
  8. A. Kler, E. Tyurina, Optimization studies of power plants and complexes. Novosibirsk: Academic publishing house “Geo”, p. 298, 2016. [Google Scholar]
  9. A. Kler, Yu. Potanina, A. Maksimov, “Consideration of the variable nature of thermal loads in the optimization of thermal power plants,” Ther. Engineering, №. 7, pp. 550–556, 2012. [Google Scholar]
  10. A. Kler, E. Tyurina, Effective methods of circuit-parametric optimization of complex heat power plants: development and application. Novosibirsk: Academic publishing house “Geo”, p. 145, 2018. [Google Scholar]
  11. A. Kler, P. Zharkov, N. Epishkin, “Parametric optimization of supercritical power plants using gradient methods,” Energy, vol. 189, 2019. DOI: 10.1016/ [CrossRef] [Google Scholar]
  12. H. Cho, A.D. Smith, P. Mago, “Combined cooling, heating and power: a review of performance improvement and optimization,” Appl. Energy, pp. 168–185, 2014. DOI: 10.1016/j.apenergy.2014.08.107. [Google Scholar]
  13. M. Casisi, P. Pinamonti, M. Reini, “Optimal lay-out and operation of combined heat & power (CHP) distributed generation systems,” Energy, pp. 2175–2183, 2009. DOI:10.1016/ [CrossRef] [Google Scholar]
  14. A. Kler, E. Stepanova, A. Maksimov, “Investigating the efficiency of a steam-turbine heating plant with a back-pressure steam turbine and waste-heat recovery,” Thermophysics and Aeromechanics, №. 6, pp. 963–973, 2018. DOI: 10.1134/S0869864318060136. [Google Scholar]
  15. A. Kler, A. Marinchenko, Yu. Potanina, “Schematic-parametric optimization of wood biomass plants that implement various variants of the Rankine cycle,” Izvestia RAN. Energy, №. 2, pp. 141-154, 2020. [Google Scholar]
  16. E. Stepanova, P. Zharkov, “Investigation of the efficiency of fuel afterburning in an additional combustion chamber of a gas turbine unit with a contact heat exchanger for heating the make-up network water,” Izvestia RAN. Energy, №. 2, pp. 133-140, 2020. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.