Open Access
Issue
E3S Web Conf.
Volume 209, 2020
ENERGY-21 – Sustainable Development & Smart Management
Article Number 03026
Number of page(s) 9
Section Session 2. Advanced Energy Technologies: Clean, Resource-Saving, and Renewable Energy
DOI https://doi.org/10.1051/e3sconf/202020903026
Published online 23 November 2020
  1. L. Guangjian, L. Zheng, W. Minghua, N. Wei-dou, Energy savings by co-production: A methanol/electricity case study, Applied Energy, 87, 2854-2859, (2010) [Google Scholar]
  2. https://www.methanol.org/ [Google Scholar]
  3. F. Moellenbruck, T. Kempken, M. Dierks, G. Oeljeklaus, K. Goerner, Cogeneration of power and methanol based on a conventional power plant in Germany, Journal of Energy Storage; 19, 393–401, (2018). [Google Scholar]
  4. Basile, F. Dalena. Methanol: Science and Engineering. 1st Edition. Elsevier, (2017). [Google Scholar]
  5. Sh. Yang, Zh. Xiao, Ch. Deng, Zh. Liu, H. Zhou, J. Ren, T. Zhou, Techno-economic analysis of coal-to-li quid processes with different gasifier alternatives, Journal of Cleaner Production, 253, 120006 (2020). [Google Scholar]
  6. L. Lv, L. Zhu, H. Li, B. Li, Methanol-power production using coal and methane as materials integrated with a two-level adjustment system, Journal of the Taiwan Institute of Chemical Engineers, 97, 346–355, (2019). [Google Scholar]
  7. A.M. Kler, E.A. Tyurina, A.S. Mednikov, A plant for methanol and electricity production: Technical-economic analysis, Energy, 165, 890–899, (2018). [CrossRef] [Google Scholar]
  8. B. I. Kondyrev, А. V. Belov, D. Sh. Mannangolov, Development of the underground coal gasification technology, Prospects of Far East coal deposits development, GIAB, №1 (2007). [Google Scholar]
  9. B. I. Kondyrev, А. V. Belov, M. V. Larionov, The making and development of underground coal gasification technology, GIAB, No.4 (2003). [Google Scholar]
  10. B. I. Kondyrev, А. Yu. Niskovskij, Main directions for improvement of underground coal gasification, GIAB, No.5, (2000). [Google Scholar]
  11. Ruban A. D. Underground coal gasification: a new stage in technological and investment development, GIAB, 2, (2007). [Google Scholar]
  12. E. M. Zhukov, Yu. I. Kropotov, I. A. Luginin, Yu. I. Chijik, Prospects of application of underground gasification in old industrial areas of Kuzbass, Molodoj uchenyj, No. 2, 146-148, (2016). [Google Scholar]
  13. Abdul Waheed Bhuttoa, Aqeel Ahmed Bazmibc, Gholamreza Zahedib, Underground coal gasification: From fundamentals to applications. Progress in Energy and Combustion, Science, 39, 189-214, (2013). [CrossRef] [Google Scholar]
  14. A.M. Kler, E.A. Tyurina (Ed.), Optimization studies of power plants and complexes. Novosibirsk: Academic publishing house “Geo”, (2016). [Google Scholar]
  15. E. A. Tyurina, A.S. Mednikov, Energy efficiency analyses of combined-cycle plant. Advances in Energy Research (ERi), An International Journal, 3, 195–203. [Google Scholar]
  16. B. I. Kondyrev, A. V. Belov, N. A. Nikolajchuk, M. I. Zvonarjov, I. V. Grebenjuk, Current state and prospects of development of underground coal gasification in the Russian Far East, Vologdinskie chtenija, 80, (2012). [Google Scholar]
  17. B. I. Kondyrev, А. V. Belov, A. Ivanov, New technical solutions in the process of underground gasification as a factor of updating its application at coal deposits of the Far East, GIAB, 3, (2005). [Google Scholar]
  18. Energy strategy of Russia for the period until 2030. http://minenergo.gov.ru/node/1026 [Google Scholar]
  19. E. V. Krejnin, Technical and economic prospects of underground coal gasification, GIAB, 5, (2009). [Google Scholar]
  20. Yu. Zorja, E. V. Krejnin, From underground gasification of coal seams to synthesis of hydrocarbon fuels, Gazokhimija, 1, (2009). [Google Scholar]
  21. Yu. F. Vasjuchkov, V. V. Mel’nik, N. I. Abramkin, I. I. Savin, Gas hydrocarbon fuel from coal: the future basis of thermal energy, Izvestija TulGU. Nauki o Zemle. 4, (2017). [Google Scholar]
  22. A. Basile, F. Dalena, Methanol: Science and Engineering. 1st Edition. Elsevier, (2017). [Google Scholar]
  23. Sh. Yang, Zh. Xiao, Ch. Deng, Zh. Liu, H. Zhou, J. Ren, T. Zhou, Techno-economic analysis of coal-to-liquid processes with different gasifier alternatives, Journal of Cleaner Production (2020). [Google Scholar]
  24. L. Lv, L. Zhu, H. Li, B. Li, Methanol-power production using coal and methane as materials integrated with a two-level adjustment system, Journal of the Taiwan Institute of Chemical Engineers, 97, 346–355, (2019). [Google Scholar]
  25. Abdul Waheed Bhutto, Aqeel Ahmed Bazmi, Gholamreza Zahedi, Underground coal gasification: From fundamentals to applications, Progress in Energy and Combustion Science, 39, 189-214, (2013). [Google Scholar]
  26. Z. Caineng, C. Yanpeng, K. Lingfeng, S. Fenjin, C. Shanshan, D. Zhen, Underground coal gasification and its strategic significance to the development of natural gas industry in China, Petroleum Exploration and Development, 46, 205-215, (2019). [CrossRef] [Google Scholar]
  27. X. Jun, X. Lin, H. Xiangming, Ch. Weimin, L. Weitao, W. Zhigang, Technical application of safety and cleaner production technology by underground coal gasification in China, Journal of Cleaner Production, 250, (2020). [Google Scholar]
  28. G. Perkins, Underground coal gasification – Part I: Field demonstrations and process performance, Progress in Energy and Combustion Science, 67, 158-187, (2018). [Google Scholar]
  29. G. Perkins, Underground coal gasification – Part II: Fundamental phenomena and modeling, Progress in Energy and Combustion Science, 67, 234-274, (2018). [Google Scholar]
  30. S. Faqiang, H. Akihiro, I. Kenichi, Zh. Wenyan, D. Gota, S. Kohki, T. Kazuhiro, K. Junichi, Monitoring and evaluation of simulated underground coal gasification in an ex-situ experimental artificial coal seam system, Applied Energy, 223, 82-92, (2018). [Google Scholar]
  31. A.M. Kler (Ed.), Effective methods of circuit-parametric optimization of complex heat power plants: development and application. Novosibirsk: Academic publishing house “Geo”, (2018). [Google Scholar]
  32. A.M. Kler, N.P. Dekanova, E.A. Tyurina, Thermal power systems: optimization studies. Novosibirsk: Nauka, (2005). [Google Scholar]
  33. A.M. Kler, P.V. Zharkov, N.O. Epishkin, An effective approach to optimizing the parameters of complex thermal power plants, Thermophysics and Aeromechanics, 23, 289-296, (2016). [CrossRef] [Google Scholar]
  34. A.M. Kler, E.A .Tyurina, Production of products of deep coal processing: modeling of technologies, comparison of efficiency, The burning and plasma chemistry; 4, 276–81, (2007). [Google Scholar]
  35. L.A. Berezina, V.A Matyshak., V.N. Korchak, T.N. Burdeinaya, V.F. Tretyakov, A.Ya. Rozovskii, G.I. Lin, An in SITU IR spectroscopic study of methanol conversion on an SNM-1 catalyst, Kinetics and Catalysis. 50, 775-783, (2009). [CrossRef] [Google Scholar]
  36. A.Ya. Rozovskii, G.I. Lin, Fundamentals of methanol synthesis and decomposition Topics in Catalysis, 22, 137-150, (2003). [Google Scholar]
  37. A.Ya. Rozovskii, G.I. Lin, The theoretical basis of the methanol synthesis process. Moscow: Chemistry; (1990). [Google Scholar]
  38. Regional Energy Commission of the Sakhalin Region. http://rec.admsakhalin.ru/tarfy/ . [Google Scholar]
  39. Far Eastern Energy Company Branch of Khabarovskenergosbyt. https://www.dvec.ru/khabsbyt/private_clients/tariffs/ [Google Scholar]
  40. Far Eastern Energy Company Branch of Dalenergosbyt. https://www.dvec.ru/dalsbyt/private_clients/tariffs/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.