Open Access
Issue
E3S Web Conf.
Volume 209, 2020
ENERGY-21 – Sustainable Development & Smart Management
Article Number 05004
Number of page(s) 7
Section Session 4. Eastern Vector of Russia's Energy Strategy: Current State and Look into the Future
DOI https://doi.org/10.1051/e3sconf/202020905004
Published online 23 November 2020
  1. O.V. Evstropieva Cross-border tourism in neighboring regions of Russia and Mongolia. – Irkutsk: Publishing House of the V.B. Sochava Institute of Geography, Siberian Branch of the Russian Academy of Sciences. 143 p. (2009). (in Russian). [Google Scholar]
  2. D. Enkhtaivan, O.V. Evstropieva, Cross-border tourism in Mongolia. Sovremennye problemy servisa i turizma. 9(4), P. 37-43. (2015) (in Russian) [Google Scholar]
  3. G.Ya. Vagin. Comments on GOST R 54149-2010, the new standard for electric power quality, and its accompanying standards. Promyshlennaja energetika. 2013. No. 01, pp.39-43. (in Russian [Google Scholar]
  4. I. Yu. Ivanova, V.A. Shakirov, N.A. Khalgaeva. Effects of the Adoption of Renewable Energy Sources within the “Baikal-Khövsgöl” Cross-Border Recreation Area. Energy Systems Research, 2(3). pp.11-20. (2019). [Google Scholar]
  5. F. Calderón-Vargas, D. Asmat-Campos, A. Carretero-Gómez. Sustainable Tourism and Renewable Energy: Binomial for Local Development in Cocachimba, Amazonas, Peru,” Sustainability, Vol. 11(18), p. 4891 (2019). [Google Scholar]
  6. S.T. Katircioglu. International tourism, energy consumption, and environmental pollution: The case of Turkey. Renew. Sustain. Energy Rev. 36, pp. 180–187 (2014). [CrossRef] [Google Scholar]
  7. M. Beer, R. Rybár, M. Kaľavský. Renewable energy sources as an attractive element of industrial tourism. Current Issues in Tourism, 21(18), pp. 2139-2151 (2018). [CrossRef] [Google Scholar]
  8. N. Khaboot, R. Chatthaworn, A. Siritaratiwat, C. Surawanitkun, P. Khunkitti. Increasing PV penetration level in low voltage distribution system using optimal installation and operation of battery energy storage. Cogent Engineering, 6(1), 1641911 (2019). [Google Scholar]
  9. R.R. Nasyrov, R.I. Aljendy, T. Kherbek. Determining the power of renewable energy sources to cover the shortage of active. Electric power. Transmission and distribution. No. 5 (56). pp. 72-77. (2019). (in Russian). [Google Scholar]
  10. M.M. Aman, G.B. Jasmon, K.H. Solangi, A.H.A Bakar, H. Mokhlis. Optimum simultaneous DG and capacitor placement on the basis of minimization of power losses. International Journal of Computer and Electrical Engineering, 5, no. 5, pp. 516-522. (2013). [CrossRef] [Google Scholar]
  11. H.R. Esmaeilian, O. Darijany, M. Mohammadian. Optimal placement and sizing of DG units and capacitors simultaneously in radial distribution networks based on the voltage stability security margin. Turkish Journal of Electrical Engineering & Computer Science, pp. 1-14. (2014). [Google Scholar]
  12. S. Naik, D.K. Gopiya, D.K. Khatod, M.P. Sharma. Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks. International Journal of Electrical Power & Energy Systems, 53, pp. 967-973. (2013). [CrossRef] [Google Scholar]
  13. K. Muthukumar, S. Jayalalitha. Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique. International Journal of Electrical Power & Energy Systems, 78, pp. 299-319. (2016). [CrossRef] [Google Scholar]
  14. A. Khodabakhshian, H. Mohammad. Simultaneous placement and sizing of DGs and shunt capacitors in distribution systems by using IMDE algorithm. International Journal of Electrical Power & Energy Systems, 82, pp. 599-607. (2016). [CrossRef] [Google Scholar]
  15. A. Edelev, D. Karamov, I. Sidorov, D.V. Binh, N.H. Nam, N.H. Anh, P.V. Duy, P.T. Hanh. Modelling energy systems of Vietnam with integration of renewable power sources. CEUR Workshop Proceedings. Vol. 2430. pp. 42-50. (2019). [Google Scholar]
  16. M. Rahmani. Simultaneous placement of DG and capacitor in distribution network. Electric Power Systems Research, 131, pp. 1-10. (2016). [CrossRef] [Google Scholar]
  17. S.A. Mehran, A. Mojtaba, T.H. Yaser. Optimal allocation of distributed generations and shunt capacitors using salp swarm algorithm. 26-th Iranian Conference on Electrical Engineering (ICEE 2018), pp. 1166-1172. (2018). [Google Scholar]
  18. L. Vanfretti, F. Milano. Application of the PSAT, an Open Source Software, for Educational and Research Purposes. 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, 2007, pp. 1-7. [Google Scholar]
  19. R.K. Rietz, S. Suryanarayanan. A review of the application of analytic hierarchy process to the planning and operation of electric power microgrids. 2008 40th North American Power Symposium, Calgary, AB, pp. 1-6, (2008). [Google Scholar]
  20. J.S. Dyer. MAUT. In: Figueira, J.R., et al. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys, pp. 265–295. Springer, New York (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.