Open Access
Issue
E3S Web Conf.
Volume 210, 2020
Innovative Technologies in Science and Education (ITSE-2020)
Article Number 05004
Number of page(s) 9
Section Plant Growing and Cereal Grain
DOI https://doi.org/10.1051/e3sconf/202021005004
Published online 04 December 2020
  1. R. B. Ali, E. Aridhi, A. Mami, Fuzzy logic controller of temperature and humidity inside an agricultural greenhouse Environmental Science 2016 7th International Renewable Energy Congress (IREC) doi: 10.1109/IREC.2016.7478929 [Google Scholar]
  2. S. Mohamed, I. A. Hameed, A GA-based adaptive neuro-fuzzy controller for greenhouse climate control system.Alex. Eng. J., 57, 773–779 (2016) [CrossRef] [Google Scholar]
  3. S. Revathi, N. SivakuMaran, Fuzzy based temperature control of greenhouse. IFAC PapersOnLine, 49, 549–554 (2016) [CrossRef] [Google Scholar]
  4. H. R. Lala, K. M. Nacer, B. Jean-Francois, Micro-climate optimal control for an experimental Greenhouse Automation, 1, 1-6 (2012) doi:10.1109/ccca.2012.6417903 [Google Scholar]
  5. G. Farid, C. K. Benjamin, Automatic Control Systems, 9th edition, John Wiley & Sons (2010) [Google Scholar]
  6. L. Hao, D. Ai-wang, L. Fu-sheng, S. Jing-sheng, W. Yan-Cong, S. Chi-Tao, Drip Irrigation Scheduling for Tomato Grown in Solar Greenhouse Based on Pan Evaporation in North China Plain, Journal of Integrative Agriculture, 12(3), 520-531, (2013) [CrossRef] [Google Scholar]
  7. X. Li, V. Strezov, energy and greenhouse gas emission assessment of conventional and solar assisted air conditioning systems. Sustainability, 7, 14710–14728 (2015) [CrossRef] [Google Scholar]
  8. F. Hahn, Fuzzy controller decreases tomato cracking in greenhouses. Comput. Electron. Agric., 77, 21-2720 (2011) [CrossRef] [Google Scholar]
  9. M. D. Heidari, M. Omid, Energy use patterns and econometric models of major greenhouse vegetable productions in Iran. Energy (2011) [Google Scholar]
  10. M. Cossu, L. Murgia, L. Ledda, P.A. Deligios, A. Sirigu, F. Chessa, Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity. Appl. Energy, 133, 89–100 (2014) [CrossRef] [Google Scholar]
  11. A. Mohammadi, M. Omid, Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran. Appl. Energy, 87, 191–196 (2010) [CrossRef] [Google Scholar]
  12. R. Leyva, C. Constán-Aguilar, E. Sánchez-Rodríguez, M. Romero-Gámez, T. Soriano, Cooling systems in screenhouses: Effect on microclimate, productivity and plant response in a tomato crop. Biosyst. Eng., 129, 100–111 (2015) [CrossRef] [Google Scholar]
  13. P. Banik, A. Ganguly, Thermal modeling and economical analysis of a solar desiccant assisted distributed fan-pad ventilated greenhouse. Lect. Notes Eng. Comput. Sci., 2, 1274–1279 (2014) [Google Scholar]
  14. S. R. West, J. K. Ward, J. Wall, Trial results from a model predictive control and optimisation system for commercial building HVAC. Energy Build, 72, 271–279 (2014) [CrossRef] [Google Scholar]
  15. J. Chen, J. Yang, J. Zhao, F. Xu, Z. Shen, Zhang, L. Energy demand forecasting of the greenhouses using nonlinear models based on model optimized prediction method. Neurocomputing, 174, 1087–1100 (2016) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.