Open Access
E3S Web Conf.
Volume 211, 2020
The 1st JESSD Symposium: International Symposium of Earth, Energy, Environmental Science and Sustainable Development 2020
Article Number 02020
Number of page(s) 11
Section General Environmental Modelling
Published online 25 November 2020
  1. Z. M. Surahman, I. Hanningtyas, D. Aristi, F. Cahyaningrum, E. Laelasari, Factors related to the presence of formaldehyde in the salted fish trade in Ciputat, Indonesia, Malaysian Journal of Medicine and Health Scinces. 15 3, 89–94 (2019) [Google Scholar]
  2. A. Nuraini, T. Nurhayati, M. Nurilmala, Activity of Trimethylamine-N-Oxide Demethylase (TMAOase) in the Forming of Natural Formaldehyde in Greater Lizardfish (Saurida tumbil), Jurnal Pengolahan Hasil Perikanan Indonesia. 20, 3, 549–558 (2017) [CrossRef] [Google Scholar]
  3. M. Yasin, N. Irawati, A.H. Zidan, Kismiyati, A.T. Mukti, A. Soegianto, D.K.P. Rosalia, R.A. Wardani, M. Khasanah, H.J. Kbashi, A.M. Perego, Fiber bundle sensor for detection of formaldehyde concentration in fish, Optical Fiber Technology, 52, (2019) [CrossRef] [Google Scholar]
  4. WHO, The World Health Organization Report 2002: reducing risks, promoting healthy life, France (2002) [Google Scholar]
  5. I. Jeyasanta, P. Jamila, Quality characteristics including formaldehyde content in selected seafoods of Tuticorin, southeast coast of India, International Food Research Journal, 25 1, 293–302 (2018) [Google Scholar]
  6. U. Anissah, A. K. Putri, G. R. Barokah, An estimation of endogenous formaldehyde exposure due to consumption of Indonesian opah fish (Lampris guttatus) in three major export destination countries, Squalen Bulletin Marine and Fisheries Postharvest and Biotechnol, 14, 1, (2019) [CrossRef] [Google Scholar]
  7. FAO, The State of World Fisheries and Aquaculture 2018 Meeting the sustainable development goals, Rome, Licence: CC BY-NC-SA 3.0 IGO, (2018) [Google Scholar]
  8. L. S. Jawahar, C. John, M. Shafeekh, T. K. Anupama, T. V. Sankar, Retention of residual formaldehyde in treated Indian mackerel (Rastrelliger kanagurta) under iced storage and related food safety concern, Indian J. Fish., 64, 4, 87–93, (2017) [CrossRef] [Google Scholar]
  9. J. Li, J. Zhu, L. Ye, Determination of Formaldehyde in Squid by High-Performance Liquid Chromatography, Asia Pac. J. Clin. Nutr., 16, 1, 127–130, (2007) [PubMed] [Google Scholar]
  10. S. Bhowmik, M. Begum, A. Hossain, M. Rahman, A. K. M. N. Alam, Determination of formaldehyde in wet marketed fish by HPLC analysis : A negligible concern for fish and food safety in Bangladesh, Egyptian Journal of Aquatic Research, 43, 3, 245–248, (2017) [CrossRef] [Google Scholar]
  11. EFSA, Endogenous formaldehyde turnover in humans compared with exogenous contribution from food sources, EFSA Journal., 12, 2, (2014) [Google Scholar]
  12. IARC, Evaluation of carcinogenic risks to humans: Wood Dust and Formaldehyde, 62. UK (1995) [Google Scholar]
  13. M. A. A. Mamun, M. A. Rahman, M. K. Zaman, Z. Ferdousi, M. A. Reza, Toxicological effect of formalin as food preservative on kidney and liver tissues in mice model, IOSR Journal Environmental Science Toxicology Food Technology, 8, 9, 47–51, (2014) [CrossRef] [Google Scholar]
  14. F. Nowshad, M. N. Islam, M. S. Khan, Concentration and formation behavior of naturally occurring formaldehyde in foods, Agric. Food Secur, 7, 1, 1–8, (2018) [CrossRef] [Google Scholar]
  15. A. Songur, O. A. Ozen, M. Sarsilmaz, The Toxic Effects of Formaldehyde on the nervous system, 105-118, (2010) [Google Scholar]
  16. P. Wahed, M. A. Razzaq, S. Dharmapuri, M. Corrales, Determination of formaldehyde in food and feed by an in-house validated HPLC method, Food Chem., 202, 476–483, (2016) [CrossRef] [PubMed] [Google Scholar]
  17. National Standardization Agency of Indonesia, Threshold Value (TLV) of chemicals in workplace air SNI 19–0232-2005, (2005) [Google Scholar]
  18. A. S. Murniyati, Sunarman, Pendinginan Pembekuan dan Pengawetan Ikan (Refrigeration Freezing and Preserving Fish), Yogyakarta. Kanisius, (2000) [Google Scholar]
  19. K. Leelapongwattana, S. Benjakul, W. Visessanguan, N. K. Howell, Physicochemical and biochemical changes during frozen storage of minced flesh of lizardfish (Saurida micropectoralis), Food Chem., 90, 1–2, 141–150, (2005) [CrossRef] [Google Scholar]
  20. S. Benjakul, W. Visessanguan, M. Tanaka, Induced formation of dimethylamine and formaldehyde by lizardfish (Saurida micropectoralis) kidney trimethylamine-N-oxide demethylase, Food Chem., 84, 2, 297–305, (2004) [CrossRef] [Google Scholar]
  21. N. F. Haard, B. K. Simpson, Seafood Enzymes: Utilization and Influence on Postharvest Seafood Quality, New York: Marcel Dekker, Inc, 2000. [CrossRef] [Google Scholar]
  22. C. K. S. Saba, S. I. Atayure, F. Adzitey, Assessment of formaldehyde levels in local and imported fresh fish in ghana: A case study in the tamale metropolis of Ghana, J. Food Protection, 78, 3, 624–627, (2015) [CrossRef] [Google Scholar]
  23. N. H. Quang, Guidelines For Handling And Preservation Of Fresh Fish For Further Processing In Vietnam, Iceland (Eur): The United Nation University Fisheries Training Programme, (2005) [Google Scholar]
  24. J. T. Murtini, R. Riyanto, N. Priyanto, I. Hermana, Natural Development of Formaldehyde on Some Kinds of Marine Fish during Storage in Crushed Ice, JPB Perikanan, 9, 2, 143–151, (2014). [Google Scholar]
  25. N. Rachmawati, R. Riyanto, = Farida Ariyani, “Formaldehyde Formation in BrownMarbled Grouper (Ephinephelus fuscoguttatus) During Cold Storage, ” Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 2, 2, (2007) [CrossRef] [Google Scholar]
  26. G. R. Barokah, A. K. Putri, U. Anissah, T. Jovita Murtini, Formaldehyde Formation and Decreasing Quality of Beautiful Grouper Fish (Epinephelus fuscoguttatus × E. microdon) During Storage At Freezing Temperature, Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan, 13, 1, 71–78, (2018) [CrossRef] [Google Scholar]
  27. J. W. Creswell, Research Design Approaches to Qualitative, Quantitative, and Mixed Methods. USA, SAGE Publication, Inc., (2014) [Google Scholar]
  28. A. K. Putri, Probabilistic Health Risk Assessment Due to Natural Formaldehyde Intake through Opah Fish (Lampris guttatus) Consumption in Indonesia, Squalen Bull. Mar. Fish. Postharvest Biotech., 13, 2, (2018) [Google Scholar]
  29. H. E. Irianto, S. Giyatmi, Teknologi Pengolahan Hasil Perikanan (Fishery Product Processing Technology), Jakarta, Universitas Terbuka, (2015) [Google Scholar]
  30. N. Nordin, A. B. Fatimah, Y. C. B. Farhana, Formaldehyde content and quality characteristics of selected fish and seafood from wet markets, International Food Research Journal, 18, 1, 125–136, (2011) [Google Scholar]
  31. National Standardization Agency of Indonesia, Chemical Test Method Part 8: Determination of Total Volatile Base Nitrogen (TVB-N) and Trimethyl Amine Nitrogen (TMA-N) Levels in Fishery Products SNI No. 2354.8: 2009, (2009) [Google Scholar]
  32. Hesis, Formaldehyde. Hazard Evaluation System & Information Service, California Department of Public Health California Department of Industrial Relations, (2011) [Google Scholar]
  33. C. G. Sotelo, C. Pineiro, R. I. Perez Martin, Denaturation of fish proteins during frozen storage: role of formaldehyde, Z Lebensm Unters Forsch., 200, 1, (1995) [CrossRef] [Google Scholar]
  34. M. R. Adams, M. O. Moss, Food Microbiology 3rd edition, University of Surrey, Guildford UK, RSC Publishing, (2008) [Google Scholar]
  35. F. Bianchi, M. Careri, M. Musci, A. Mangia, Food chemistry fish and food safety: Determination of formaldehyde in 12 fish species by SPME extraction and GC – MS analysis, Food Chem., 100, 3, (2007) [CrossRef] [Google Scholar]
  36. T. Nash, The colorimetric estimation of formaldehyde by means of the Hantzsch reaction, Biochem. J., 55, 3, (1953) [CrossRef] [Google Scholar]
  37. T. D. Widyaningsih, E. S. Murtini, Alternatif Pengganti Formalin pada Produk Pangan (Alternative to formaldehyde in food products). Surabaya, Trubus Agrisarana, (2006) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.