Open Access
Issue |
E3S Web Conf.
Volume 211, 2020
The 1st JESSD Symposium: International Symposium of Earth, Energy, Environmental Science and Sustainable Development 2020
|
|
---|---|---|
Article Number | 02021 | |
Number of page(s) | 14 | |
Section | General Environmental Modelling | |
DOI | https://doi.org/10.1051/e3sconf/202021102021 | |
Published online | 25 November 2020 |
- Samul, V. I. (1982). Osnovyi teorii uprugosti i plastichnosti: Ucheb. posobie dlya studentov vuzov. (2), pererab., M.: Vyissh. shkola, 264. [Google Scholar]
- Timoshenko, S.P., Guder, D.Zh.. (1975). Teoriya uprugosti. M.: Nauka, 576. [Google Scholar]
- Amenzade, Yu.A. (1976). Teoriya uprugosti. M.: Vyisshaya shkola, 272. [Google Scholar]
- Demidov, S.P. (1979). Teoriya uprugosti. M.: Vyisshaya shkola, 432. [Google Scholar]
- Kayumov, R.A. (2016). Osnovyi teorii uprugosti i elementyi teorii plastin i obolochek: Uchebnoe posobie. Kazan: Izd-vo Kazansk. gos. arhitek.-stroit. un-ta, 111. [Google Scholar]
- Aliev, A.V., Kalinnikov, A.E. (2014). Chislennoe reshenie ploskoy zadachi lineynoy teorii uprugosti s netrivialnoy geometriey metodom granichnyih elementov. Vestnik Izhevskogo gosudarstvennogo tehnicheskogo universiteta. 1, 151–154. [Google Scholar]
- Ovskiy, A.G. (2014). Modelirovanie ploskih zadach teorii uprugosti tolstyih mnogosloynyih plit v sistemah kompyuternoy matematiki. VIsnik ZaporIzkogo natsIonalnogo unIversitetu 2, 101–116. [Google Scholar]
- Zamyatin, V.M., Mahov, A.V., Svetashkov, A.A. (2006). Reshenie ploskih zadach teorii uprugosti dlya polosyi s pomoschyu diagonalizovannoy sistemyi uravneniy ravnovesiya. Izvestiya Tomskogo politehnicheskogo universiteta, 309 (6), 135–139. [Google Scholar]
- Tokovyi, Yu. V., Rychahivs’kyi, A. V. (2005). Analytic Solution of the Plane Problem of the Theory of Elasticity for a Nonuniform Strip. Materials Science, 41 (1), 135–138. [CrossRef] [Google Scholar]
- Li, Lian He; Fan, Tian You (2008). Complex variable function method for the plane elasticity and the dislocation problem of quasicrystals with point group 10 mm. Physics Letters A, 372 (4), 510–514. [CrossRef] [Google Scholar]
- Elakkad, A., Bennani, M.A., Mekkaoui, J. EL, Elkhalfi, A. (2013). A Mixed Finite Element Method for Elasticity Problem. International Journal of Advanced Computer Science and Applications, 4 (2), 161–166. [CrossRef] [Google Scholar]
- Daschenko, A.F., Kolomiets, L.V., Orobey, V.F., Surianinov, M.G. (2010) Chislenno– analiticheskiy metod granichnyih elementov. Odessa: VMV, 1, 416, 2, 512. [Google Scholar]
- Orobey, V.F., Surianinov, M.G. (2011). Osnovnyie polozheniya chislennoanaliticheskogo varianta MGE. St. Petersburg: St. Petersburg Polytechnic Universities Press, 4 (22), 33–39. [Google Scholar]
- Aleksandrov, A.V., Potapov, V.D. (1990). Osnovyi teorii uprugosti i plastichnosti. M.: Vyisshaya shkola, 398. [Google Scholar]
- Vlasov, V.Z. (1962). Izbrannyie trudyi: V 3t. M.: Izd-vo AN SSSR, 1963. [Google Scholar]
- Kiyasov, S.N., Shuryigin, V.V. (2011). Differentsialnyie uravneniya. Osnovyi teorii, metodyi resheniya zadach: Uchebnoe posobie. Kazan: Kazanskiy federalnyiy universitet, 112. [Google Scholar]
- Mushelishvili, N.I. (1966). Nekotoryie osnovnyie zadachi matematicheskoy teorii uprugosti. M.: Izd-vo AN SSSR, 707. [Google Scholar]
- Zaytsev, V.F., Polyanin, A.D. (2003). Spravochnik po differentsialnyim uravneniyam s chastnyimi proizvodnyimi pervogo poryadka. M.: Fizmatlit, 416. [Google Scholar]
- Alekseev, E.R., Chesnokova, O.V., Rudchenko, E. A. (2008). Scilab: Reshenie inzhenernyih i matematicheskih zadach. M.: ALT Linux; BINOM. Laboratoriya znaniy, 269. [Google Scholar]
- Simona De Cicco, Fabio De Angelis. A plane strain problem in the theory of elastic materials with voids. Mathematics and Mechanics of Solids. 2020; 25(1): 46–59. [CrossRef] [Google Scholar]
- Tyukalov, Yu.Ya. Equilibrium finite elements for plane problems of the elasticity theory. Magazine of Civil Engineering. 2019. 91(7). Pp. 80–97. DOI: 10.18720/MCE.91.8. [Google Scholar]
- Svanadze, M. Steady vibration problems in the theory of elasticity for materials with double voids. Acta Mech 2018; 229(4): 1517–1536. [CrossRef] [Google Scholar]
- Svanadze, M. Fundamental solutions in the theory of elasticity for triple porosity materials. Meccanica 2016; 51(8): 1825–1837. [CrossRef] [Google Scholar]
- Svanadze, M. Potential method in the theory of elasticity for triple porosity materials. J Elasticity 2018; 130(1), DOI: 10.1007/s10659-017-9629-2. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.