Open Access
Issue
E3S Web Conf.
Volume 211, 2020
The 1st JESSD Symposium: International Symposium of Earth, Energy, Environmental Science and Sustainable Development 2020
Article Number 02022
Number of page(s) 11
Section General Environmental Modelling
DOI https://doi.org/10.1051/e3sconf/202021102022
Published online 25 November 2020
  1. Murzintsev P P, Kosarev N S, Nikonov A V, 2015 Primenenie sputnikovyih GNSStehnologiy dlya obespecheniya nadvizhki arki Bugrinskogo mosta cherez reku Ob (Novosibirsk: Interekspo-Geo-Sibir vol 1 issue 1) pp 72–76 [Google Scholar]
  2. Sorokin E S, 1939 Kolebaniya arok vol 1 pp 107–110 [Google Scholar]
  3. Morgaevskiy A B, 1955 O kolebaniyah krugovoy arki v napravlenii, perpendikulyarnom k ee ploskosti vol 22 [Google Scholar]
  4. Chidamparam P and Leissa A W, 1993 Vibrations of planar curved beams, rings, and arches vol 46 no 9 pp 467–483 [Google Scholar]
  5. Palaninathan R and Chandrasekharan P S, 1985 Curved beam element stiffness matrix formulation Comput. Struct. 21 pp 663–669 [CrossRef] [Google Scholar]
  6. Ryu H S and Sin H C, 1996 Curved beam elements based on strained fields Commun. Numer. Methods Eng. 12 pp 767–773 [CrossRef] [Google Scholar]
  7. Litewka P and Rakowski J, 1997 An efficient curved beam finite element Int. J Numer Methods Eng. 40 pp 2629–2652 [CrossRef] [Google Scholar]
  8. Litewka P and Rakowski J, 1998 The exact thick arch finite element Comput. Struct. 68 pp 369–379 [CrossRef] [Google Scholar]
  9. Iman Dayyani, Michael I Friswell, Erick I Saavedra Flores, 2014 A general super element for a curved beam. Int. Journal of Solids and Structures 51 pp 2931–2939 [CrossRef] [Google Scholar]
  10. Wu J S, Lin F T, Shaw H J, 2013 Free in-plane vibration analysis of a curved beam (arch) with arbitrary various concentrated elements Applied Mathematical Modelling 37 pp 7588–7610 [Google Scholar]
  11. Daschenko A F, Kolomiets L V, Orobey V F, Surianinov N G, 2010 Chislenno– analiticheskiy metod granichnyih elementov (Odessa: VMV) vol 1 p 416, vol 2 p 512 [Google Scholar]
  12. Orobey V F, Surianinov N G, 2011 Praktikum po resheniyu kraevyih zadach mehaniki (Odessa: Astroprint) p 408 [Google Scholar]
  13. Daschenko A F, Orobey V F and Surianinov N G, 2011 MATLAB v mehanike deformiruemogo tverdogo tela. Algoritmyi i programmyi (Harkov: Burun kniga) p 480 [Google Scholar]
  14. Orobey V F, Surianinov N G, 2011 Osnovnyie polozheniya chislenno-analiticheskogo varianta MGE (St. Petersburg: St. Petersburg Polytechnic Universities Press) vol 4(22) pp 33–39 [Google Scholar]
  15. Surianinov M G, Daschenko O F, BIlous V O, 2003 TeoretichnI osnovi dinamIki mashin (Odessa: Bahva) p 308 [Google Scholar]
  16. Lalin V.V., Dmitriev A.N., Dyakov S.F. Geometricheski nelineynoe deformirovanie i ustoychivost uprugih arok. Inzhenerno-stroitelnyiy zhurnal. 2019. Vol. 5(89). Pp. 39–51. DOI: 10.18720/MCE.89.4(rus) [Google Scholar]
  17. Le T., Lalin V.V., Bratashov A.A. Staticheskiy uchet vyisshih mod kolebaniy v zadachah dinamiki konstruktsiy. Inzhenerno-stroitelnyiy zhurnal. 2019. Vol. 4(88). Pp. 3–13. DOI: 10.18720/MCE.88.1(rus) [Google Scholar]
  18. Wu J.S., Lin F.T., Shaw H.J. Free in-plane vibration analysis of a curved beam (arch) with arbitrary various concentrated elements. Applied Mathematical Modelling. 2013. Vol. 37. Pp. 7588–7610. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.