Open Access
E3S Web Conf.
Volume 211, 2020
The 1st JESSD Symposium: International Symposium of Earth, Energy, Environmental Science and Sustainable Development 2020
Article Number 03014
Number of page(s) 12
Section Resource Sustainability
Published online 25 November 2020
  1. H. Chen, S. Wang, H. Guo, H. Lin, Y. Zhang, A nationwide assessment of litter on China’s beaches using citizen science data., Environmental Pollution, 258 (2020) http://10.1016/j.envpol.2019.113756 [Google Scholar]
  2. L. Rigamonti, S.E. Taelman, S. Huysveld, S. Sfez, K. Ragaert, J. Dewulf, A step forward in quantifying the substitutability of secondary materials in waste management life cycle assessment studies, Waste Manage., 114 (2020) http://doi:10.1016/j.wasman.2020.07.015 [CrossRef] [Google Scholar]
  3. F-C. Mihai, Assessment of COVID-19 waste flows during the emergency state in romania and related public health and environmental concerns, Int. J. Environ. Res. Public Health 17, 15 (2020) http://doi:10.3390/ijerph17155439 [Google Scholar]
  4. A. Meleko, T. Tesfaye, A. Henok, Assessment of Healthcare Waste Generation Rate and Its Management System in Health Centers of Bench Maji Zon, Ethiopian journal of health sciences 28, 2 (2018) http://10.4314/ejhs.v28i2.4 [CrossRef] [Google Scholar]
  5. A. Masood, K. Ahmad, Assessment of Municipal Solid Waste Management in Jammu City: Problems, Prospects and Solutions 58 (2020) http://doi:10.1007/978-981-152545-2_23 [Google Scholar]
  6. K. Oduro-Appiah, A. Scheinberg, A. Mensah, A. Afful, H. K. Boadu, N. de Vries, Assessment of the municipal solid waste management system in Accra, Ghana: A “Wasteaware’ benchmark indicator approach, Waste Manage Res 35, 11 (2017) http://doi:10.1177/0734242X17727066 [CrossRef] [Google Scholar]
  7. R.F. Strayer, M.E. Hummerick, J.T. Richards, L.E. McCoy, M.S. Roberts, R.M. Wheeler, Characterization of Volume F trash from four recent STS missions: Weights, categorization, water content. In 41st ICES (2011) http://doi:10.2514/6.2011-5126 [Google Scholar]
  8. H. Wu, J. Zuo, H. Yuan, G. Zillante, J. Wang, Cross-regional mobility of construction and demolition waste in Australia: An exploratory study, Resour Conserv Recycl 156 (2020) http://doi:10.1016/j.resconrec.2020.104710 [Google Scholar]
  9. M.J. Franchetti, Development of a solid waste prediction, characterization, and modeling tool for the assessment of manufacturing and service waste management systems, Journal of Solid Waste Technology and Management 38, 1 (2012) http://doi:10.5276/JSWTM.2012.38 [CrossRef] [Google Scholar]
  10. G.S. Bhander, T.H. Christensen, M.Z. Hauschild, EASEWASTE-life cycle modeling capabilities for waste management technologies, International Journal of Life Cycle Assessment 15, 4 (2010) http://doi:10.1007/s11367-010-0156-7 [CrossRef] [Google Scholar]
  11. L. Rigamonti, S. Ferreira, M. Grosso, R.C. Marques, Economic-financial analysis of the Italian packaging waste management system from a local authority’s perspective, J Clean Prod 87 (2015) http://doi:10.1016/j.jclepro.2014.10.069 [CrossRef] [Google Scholar]
  12. A. Bellini, A. Bonoli, Energy balance of waste management systems: A case study, In 2017 IEEE IEEM Conference (2017), https://doi:10.1109/IEEM.2017.8290142 [Google Scholar]
  13. R. Kumari, K. Srivastava, A. Wakhlu, A. Singh, Establishing biomedical waste management system in Medical University of India A successful practical approach, Clin Epidemiol Glob Health 1, 3 (2013) https://doi:10.1016/j.cegh.2012.11.004 [CrossRef] [Google Scholar]
  14. M. Yekkalar, S. Panahi, M. Nikravan, Evaluation of Current Laboratory Waste Management: A Step Towards Green Campus at Amirkabir University of Technology, (Filho WL, Muthu N, Edwin G, Sima M, eds.). Springer Int Publishing Ag; (2015) [Google Scholar]
  15. C. Liu, T.T. Nguyen, Evaluation of household food waste generation in hanoi and policy implications towards SDGs target 12.3, Sustainability 12, 16 (2020) https://10.3390/su12166565 [Google Scholar]
  16. L.K. Brogaard, A. Damgaard, M.B. Jensen, M. Barlaz, T.H. Christensen, Evaluation of life cycle inventory data for recycling systems, Resources, Conservation and Recycling 87. (2014) https://10.1016/j.resconrec.2014.03.011 [CrossRef] [Google Scholar]
  17. L. Zhu, Z. Cui, J. Zhou, in Advanced Materials Research 156 (2011) https://doi:10.4028/ [Google Scholar]
  18. A.B. Saraiva Schott, H. Wenzel, C. Jansen, Identification of decisive factors for greenhouse gas emissions in comparative life cycle assessments of food waste management an analytical review, J Clean Prod 119 (2016) https://doi:10.1016/j.jclepro.2016.01.079 [Google Scholar]
  19. A.U. Zaman, Identification of key assessment indicators of the zero waste management systems, Ecological Indicators 36 (2014) https://10.1016/j.ecolind.2013.09.024 [CrossRef] [Google Scholar]
  20. I.L. Manzhurov, K. Antonov, M. Kit, D.B. Berg, D. Denisov. Information System for Decision Support in Waste Management in the Arctic Region of Russia. In AIP Conference Proceedings 2116 (2019) https://doi:10.1063/1.5114447 [Google Scholar]
  21. H.L. Vu, K.T.W. Ng, B. Fallah, A. Richter, G. Kabir, Interactions of residential waste composition and collection truck compartment design on GIS route optimization, Waste Management 102 (2020) https://doi:10.1016/j.wasman.2019.11.028 [Google Scholar]
  22. M.N. Khan, F. Naseer IoT based university garbage monitoring system for healthy environment for students, In 2020 IEEE 14th International Conference on Semantic Computing (ICSC) (2020) https://doi:10.1109/ICSC.2020.00071 [Google Scholar]
  23. J. Soukopova, J. Kalina, Mathematical Model of Economics of Municipal Waste Management, (Ramik J, Stavarek D, eds.). Silesian Univ Opava, School Business Administration Karvina (2012) [Google Scholar]
  24. H. Jiri, S. Jana, Modelling integrated Waste Management System of the Czech Republic, In Proceedings of the 14th WSEAS International Conference on Latest Trends on Systems 1 (2010) [Google Scholar]
  25. E. Friedrich, C. Trois, Quantification of greenhouse gas emissions from waste management processes for municipalities A comparative review focusing on Africa, Waste Management 31, 7 (2011) https://doi:10.1016/j.wasman.2011.02.028 [CrossRef] [Google Scholar]
  26. M-AM Uche, J. Whalley, L. Chile, P. Salli, Shaping and delivering tomorrow’s sustainable municipal solid waste management system: Proposal for a structured data management infrastructure, Int J Environ Waste Manag, 24, 4 (2019) https://doi:10.1504/IJEWM.2019.103646 [Google Scholar]
  27. G.M. Monzambe, K. Mpofu, I.A. Daniyan, Statistical analysis of determinant factors and framework development for the optimal and sustainable design of municipal solid waste management systems in the context of industry 4.0, Procedia CIRP. 84 (2019) https://doi:10.1016/j.procir.2019.04.182 [CrossRef] [Google Scholar]
  28. N. Tsydenova, A.V. Morillas, A.A.C. Salas, Sustainability assessment of waste management system for mexico city (Mexico)—based on analytic hierarchy process, Recycling 3, 3 (2018) https://doi:10.3390/recycling3030045 [CrossRef] [Google Scholar]
  29. P.C. Stern, Toward a Coherent Theory of Environmentally Significant Behavior, JSI, 56, 3 (2000), pp. 407–424, [Google Scholar]
  30. A. Menon, A. Menon, Enviropreneurial marketing strategy: The emergence of corporate environmentalism as market strategy, Journal of Marketing, 61, 1 (1997), pp. 51–67, [CrossRef] [Google Scholar]
  31. J.L. Hardcastle. Nike, Starbucks: Climate Change Policy Is ‘Economic Opportunity, ’, Environmental Leader, April 11, (2013) [Google Scholar]
  32. K. Ejsmont, B. Gladysz, A. Kluczek, Impact of Industry 4.0 on Sustainability— Bibliometric Literature Review, Sustainability, 12, 14 (2020), paper id: 5650, [CrossRef] [Google Scholar]
  33. B. Jovanovski, D. Seykova, A. Boshnyaku, C. Fischer, The Impact of Industry 4.0 on the Competitiveness of SMEs, in IV International Scientific Conference Industry 4.0, pp. 130–135, 24–27 June 2019, Burgas, Bulgaria [Google Scholar]
  34. S. Doherty, S. Hoyle, Supply chain decarbonization: role of transport and logistics in reducing supply chain carbon emissions, World Economic Forum report, (2009) [Google Scholar]
  35. D. Minashkina, A. Happonen, Decarbonizing warehousing activities through digitalization and automatization with WMS integration for sustainability supporting operations, in E3S Web Conf (ICEPP 2019), Vol. 158, (2020), pp. 1–7, [Google Scholar]
  36. D. Minashkina, A. Happonen, Operations automatization and digitalization – a research and innovation collaboration in physical warehousing, AS/RS and 3PL logistics context, in LUT Research Reports series report 86, ISBN 978-952-335-293-3, ISSN 2243-3376, (2018), p. 66 [Google Scholar]
  37. D. Minashkina, A. Happonen, A development of the warehouse management system selection framework as academic-industrial collaboration work with sustainability considerations, in AIP Conference Proceedings, 2233, 1 (2020), pp. 1–12, [Google Scholar]
  38. D. Minashkina, A. Happonen, Systematic literature review and research gap issues on third party logistics operators selecting WMS for efficient operations for customers, International Journal of Supply Chain and Inventory Management, 3, 2 (2020), pp. 142–166, [CrossRef] [Google Scholar]
  39. D. Budgen, P. Brereton, Performing systematic literature reviews in software engineering, in Proceedings of the 28th international conference on Software engineering, May 2006, pp. 1051–1052, [Google Scholar]
  40. B. Kitchenham, S. Charters, Guidelines for Performing Systematic Literature Reviews in Software Engineering, EBSE Technical Report, (2007), pp. 1–65 [Google Scholar]
  41. A. Allesch, P.H. Brunner, Assessment methods for solid waste management: A literature review, WM&R: The Journal for a Sustainable Circular Economy, 32, 6 (2014), pp. 461–473, [CrossRef] [Google Scholar]
  42. P.S. Dawane, S.M. Gawande, Solid waste managementA review, International journal of current research, 7, 5 (2015), pp. 16019–16024 [Google Scholar]
  43. F.T.F. Moraes, A.T.T. Gonçalves, J.P. Lima, R. da Silva Lima, An assessment tool for municipal construction waste management in Brazilian municipalities, Waste Management & Research: The Journal for a Sustainable Circular Economy, 38, 7 (2020), pp. 762–772, [CrossRef] [Google Scholar]
  44. J. Porras, J. Khakurel, J. Ikonen, A. Happonen, A. Knutas, A. Herala, O. Drögehorn, Hackathons in software engineering education – lessons learned from a decade of events, In International Conference on Software Engineering 2018 (ICSE), pp. 40–47, Gothenburg, Sweden (2018, [Google Scholar]
  45. J. Porras, A. Knutas, J. Ikonen, A. Happonen, J. Khakurel, A. Herala, Code camps and hackathons in education literature review and lessons learned, In proceedings of the 52nd Hawaii International Conference on System Sciences (HICSS 2019), pp. 7750-7759, Hawaii, USA (2018), [Google Scholar]
  46. A. Happonen, D. Minashkina, A. Nolte, M.A. Medina Angarita, Hackathons as a Company – University Collaboration Tool to Boost Circularity Innovations and Digitalization Enhanced Sustainability, in AIP Conference Proceedings, Vol. 2233, Iss. 1, p. 1-11, (2020), [Google Scholar]
  47. M. Palacin-Silva, J. Khakurel, A. Happonen, T. Hynninen, J. Porras, Infusing Design Thinking Into a Software Engineering Capstone Course, In the 30th IEEE Conference on Software Engineering Education and Training (CSEE&T), pp. 1–10, Savannah, Georgia, USA (2017) [Google Scholar]
  48. V. Palacin, S. Ginnane, M.A. Ferrario, A. Happonen, A. Wolff, S. Piutunen, N. Kupiainen, SENSEI: Harnessing Community Wisdom for Local Environmental Monitoring in Finland, in CHI Conference on Human Factors in Computing Systems, pp. 1–8, Glagsgow, Scotland UK (2019), [Google Scholar]
  49. A-W.K. Harzing, R. van der Wal, Google Scholar as a new source for citation analysis, ESEP, 8, 1 (2008), pp. 61–73, [CrossRef] [Google Scholar]
  50. A. Happonen, V. Siljander, Gainsharing in Logistics Outsourcing: Trust leads to Success in the Digital Era, International Journal of Collaborative Enterprise, 6, 2 (2020) pp. 150–175, [CrossRef] [Google Scholar]
  51. E. Salmela, C. Santos, A. Happonen, Formalization of Front End Innovation in Supply Network Collaboration, International Journal of Innovation and Regional Development, 5, 1 (2013), pp. 91–111, [CrossRef] [Google Scholar]
  52. S-K. Kinnunen, A. Happonen, S. Marttonen-Arola, T. Kärri, Traditional and extended fleets in literature and practice: definition and untapped potential, International Journal of Strategic Engineering Asset Management, 3, 3 (2019), pp. 239–261, [CrossRef] [Google Scholar]
  53. H. Kortelainen, A. Happonen, S-KK innunen, Fleet Service Generation – Challenges in Corporate Asset Management, Lecture Notes in Mechanical Engineering, Springer, pp. 373–380, (2016), [Google Scholar]
  54. H. Kortelainen, A. Happonen, J. Hanski, From asset provider to knowledge company transformation in the digital era, In Lecture Notes in Mechanical Engineering, pp. 333-341, (2019), [CrossRef] [Google Scholar]
  55. V. Palacin, S. Gilbert, S. Orchard, A. Eaton, M.A. Ferrario, A. Happonen, Drivers of Participation in Digital Citizen Science: Case Studies on Järviwiki and Safecast, Citizen Science: Theory and Practice, 5, 1 (2020) pp. 1–20, [CrossRef] [Google Scholar]
  56. E. Salmela, A. Happonen, Role of Logistics Service Provider in Supply Chain Between Manufacturer and Subcontractor, ISL 2009 Global supply chains and inter-firm networks, Istanbul, Turkey, ISBN 978-0-85358-220-5, (2009), pp. 531–537 [Google Scholar]
  57. E. Salmela, A. Happonen, J. Huiskonen, New Concepts for Demand-Supply Chain Synchronization, International Journal of Manufacturing Research, 7, 2 (2012), pp. 148–164, [CrossRef] [Google Scholar]
  58. E. Salmela, A. Happonen, Synchronization of Demand and Supply in a Supply Chain Manufacturing Industrial Products, 16th International Annual EurOMA Conference, Göteborg, Sweden, p. 9, (2009) [Google Scholar]
  59. T. Eskelinen, T. Räsänen, U. Santti, A. Happonen, M. Kajanus, Designing a Business Model for Environmental Monitoring Services Using Fast MCDS Innovation Support Tools, Technology Innovation Management Review, 7, 11 (2017), pp. 36–46, [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.