Open Access
E3S Web Conf.
Volume 212, 2020
2020 International Conference on Building Energy Conservation, Thermal Safety and Environmental Pollution Control (ICBTE 2020)
Article Number 01010
Number of page(s) 13
Section Ecology and Energy Saving
Published online 26 November 2020
  1. Bogdasarov MA [Geology and minerageny of Quaternary deposits in the territory of the Podlasie-Brest depression]. Brest, BrGU Publ., 2011, 166 p. (in Russian). [Google Scholar]
  2. Makhnach A. S., Garetskii R. G., Matveev A. V. [Geology of Belarus]. Minsk, Institut of NAN Belarusi Publ., 2001, 716 p. (in Russian). [Google Scholar]
  3. Grechanik N. F., Matveev A. V., Bogdasarov M. A. [Relief of the territory of the Podlasie-Brest Depression]. Brest, BrGU Publ., 2013, 154 p. (in Russian). [Google Scholar]
  4. Miasnikovich M. U. et al. [National Atlas of Belarus]. Minsk, Belkartografiia Publ., 2002, 292 p. (in Russian). [Google Scholar]
  5. Kurlovich D. M. [Spatial differentiation and dynamics of morphostructures of the Belarusian Poozerye]. Minsk, BGU Publ., 158 p. (in Russian). [Google Scholar]
  6. Kroshinskii V. A. [Geological mapping of the northern section of the Minsk Upland based on GIS technologies]. Materials [Proccedings of the International Scientific Conference dedicated to the 100th anniversary of the birth of academician K. I. Lukashev]. Minsk, 2017, pp. 36-38. (in Russian). [Google Scholar]
  7. Onoshko M. P., Kroshinskii V. A., Podruzhaia M A, Shidlovskaia A.V. [GIStechnologies in the construction of horizon-level structural-facies maps of Quaternary deposits of Belarus]. Materials [Proccedings of the International Scientific Conference Problems of regional Geology of the West of the Eastern European platform and adjacent territories]. Minsk, 2019. (in Russian). [Google Scholar]
  8. Cushing E. M. Building a three dimensional model of the active Plio-Quaternary basin of Argostoli (Cephalonia Island, Greece). Engineering Geology, 2020, vol. 265, pp. 1-22. DOI: 10.1016/j.enggeo.2019.105441. [CrossRef] [Google Scholar]
  9. Borisov D V [Application of GIS in the tasks of imaging overliying seams to determine promising petroleum territories]. INTEREKSPO GEO-SIBIR ’, 2016, vol. 2, no.2, pp. 123-126. (in Russian). [Google Scholar]
  10. Kazanskaia D. A., Aleksandrov V. M., Belkina V. A. [Geological modeling of Vikulovskaya suite production sediments]. , 2019, vol. 330, no 7, pp. 195-207. (in Russian). [Google Scholar]
  11. Nugmanov B. H. [3D Structural-Tectonic Modeling of Geological Structure of the Deposit of “Kalamkas” Field]. SOCAR Proceedings, 2017, no 1, pp. 17-23. (in Russian). [CrossRef] [Google Scholar]
  12. Prokudin V. G., Valitov M. G., Kononets S. N. [The Cenozoic sediments structure of the Amur Bay depression]. Vestnik DVO RAN, 2018, no 1, pp. 121-127. (in Russian). [Google Scholar]
  13. Sivtsev A. I., Zueva I. N., Chalaia O. N. [Structural map by thickness and depth of the top of the Kuonamskaya combustible shale formation]. Materials [Proccedings of the International Scientific and Practical Conference]. Iakutsk, 2017, pp. 233-237. (in Russian). [Google Scholar]
  14. Ryzhov A. E. [Allocation of new promising objects in the saline sediments within Kovykta zone of gas accumulation and its contiguous territories]., 2017, no 3, pp. 100-111. (in Russian). [Google Scholar]
  15. Vasilenok E. A. [Use of GIS-technologies to identify oil-bearing structures within the Girovskaya area of the Pripyat trough]. Materials [Proccedings of the GIS projects of students and graduate students of higher education institution of the Republic of Belarus, held in celebration of International GIS Day]. Minsk, 2015, pp. 18-22. (in Russian). [Google Scholar]
  16. Vouillamoz N. et al 3D cartographic modeling of the Alpine arc. Tectonophysics, 2012, vol. 579, pp. 131-143. DOI: 10.1016/j.tecto.2012.06.012. [Google Scholar]
  17. Gasselt S., Nass A. Planetary mapping The datamodel’s perspective and GIS framework. Planetary and Space Science, 2011, vol. 59, pp. 1231-1242. DOI: 10.1016/j.pss.2010.09.012. [CrossRef] [Google Scholar]
  18. Mendonca M. Three-dimensional GIS cartography applied to the study of the spatial variation of soil horizons in Swiss floodplain. Geoderma, 2000, vol. 97, pp. 351-366. DOI: 10.1016/S0016-7061(00)00045-8. [CrossRef] [Google Scholar]
  19. Mironov O. K. [Geoinformation technologies for drawing up large-scale geological maps of Moscow]. , 2011, no 3, pp. 198-214. (in Russian). [Google Scholar]
  20. Kurlovich D. M. [The use of GIS technologies for the development of geodatabase and information projects of brown coal and oil shale deposits in the Republic of Belarus]. Materials from Proxings of the International scientific Congress on Informatics information systems and technologies]. Minsk, 2011), pp. 188-193. (in Russian). [Google Scholar]
  21. Khrushchov D. P. Regional structural-lithological modeling of sedimentary cover. Geologic journal, 2015, no 2, pp. 27–38. [CrossRef] [Google Scholar]
  22. Mangkhemthong N. et al. Geological model and development of the Cenozoic Wiang Pa Pao Basin, Chiang Rai Province, Northern Thailand, based on gravity data modelling and surface structural interpretation. Tectonophysics, 2020, vol. 786. DOI: 10.1016/j.tecto.2020.228454. [Google Scholar]
  23. Attwa M., Henaish A. Regional structural mapping using a combined geological and geophysical approach – A preliminary study at Cairo-Suez district, Egypt. Journal of African Earth Sciences, 2018, vol. 144, pp. 104–121. DOI: 10.1016/j.jafrearsci.2018.04.010. [CrossRef] [Google Scholar]
  24. Przulj N., Malod-Dognin N. Network analytics in the age of big data. Science, 2016, vol. 353, pp. 123–124. DOI: 10.1126/science.aah3449. [CrossRef] [Google Scholar]
  25. Jin H., Wah B., Cheng X., Wang Y. Significance and Challenges of Big Data Research. Big Data Research, 2015, vol. 2, pp. 59–64. DOI: 10.1016/j.bdr.2015.01.006. [CrossRef] [Google Scholar]
  26. Lee J., Kang. M. Geospatial Big Data: Challenges and Opportunities. Big Data Research, 2015, vol. 2, pp. 74–81. DOI: 10.1016/j.bdr.2015.01.003. [CrossRef] [Google Scholar]
  27. Lyutikova L. Logical Analysis of Data for outliers detection. Procedia Computer Science, 2020, vol. 169, pp. 330–336. DOI: 10.1016/j.procs.2020.02.192. [CrossRef] [Google Scholar]
  28. Benjelloun F. Improving outliers detection in data streams using LiCS and voting. Journal of King Saud University, 2019, vol. 2, pp. 1–9. DOI: 10.1016/j.jksuci.2019.08.003. [Google Scholar]
  29. Muzik J. et al. Creation of 3D Geological Models Using Interpolation Methods for Numerical Modelling. Procedia Earth and Planetary Science, 2015, vol. 15, pp. 25–30. DOI: 10.1016/j.proeps.2015.08.007. [CrossRef] [Google Scholar]
  30. Kebloutia A., Ouerdachia L., Boutaghanea H. Spatial Interpolation of Annual Precipitation in AnnabaAlgeria – Comparison and Evaluation of Methods. Energy Procedia, 2012, vol. 18, pp. 468–475. DOI: 10.1016/j.egypro.2012.05.058. [CrossRef] [Google Scholar]
  31. Maevskaya A. N. [Algorithm for constructing models of structural geological surfaces using geoinformation technologies]. [Actual problems of Earth Sciences: proccedings of IV international. scientific and practical Conference, dedicated to the 1000th anniversary of Brest]. Brest, 2019, pp. 92-96. (in Russian). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.