Open Access
Issue
E3S Web Conf.
Volume 213, 2020
2nd International Conference on Applied Chemistry and Industrial Catalysis (ACIC 2020)
Article Number 01011
Number of page(s) 9
Section Industrial Catalysis and Chemical Substance R&D and Application
DOI https://doi.org/10.1051/e3sconf/202021301011
Published online 01 December 2020
  1. Yi T F, Mei J, Zhu Y R. (2016) Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries[J]. J Power Sources 316: 85-105. [CrossRef] [Google Scholar]
  2. Yi T F, Fang Z K, et al. (2014) Synthesis of LiNi0.5Mn1.5O4 cathode with excellent fast chargedischarge performance for lithium-ion battery[J]. Electrochim Acta 147: 250-256. [CrossRef] [Google Scholar]
  3. Wang I D, Choi D, et al. (2009) Self-assembled TiO2 graphene hybrid nanostructures for enhanced Li-Ion[J]. ACS Nano 3(4): 907-914. [CrossRef] [Google Scholar]
  4. M, Armand, J-M, et al. (2008) Building better batteries.[J]. Nature. [Google Scholar]
  5. Zhong G B, Wang Y Y, Zhang Z C, et al. (2011) Effects of Al substitution for Ni and Mn on the electrochemical properties of LiNi0.5Mn1.5O4[J]. Electrochim acta, 56(18):6554-6561. [CrossRef] [Google Scholar]
  6. J.-H. Kim, S.-T. Myung, C. S. Yoon, et al. (2004) Comparative study of LiNi0.5Mn1.5O4 and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332[J]. Chemistry of Materials, 16(21):906-914. [CrossRef] [Google Scholar]
  7. Kunduraci M, Amatucci G G. (2008) The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5-δO4 spinel lithium-ion battery cathodes[J]. electrochimica acta, 53(12):4193-4199. [CrossRef] [Google Scholar]
  8. Zhu Z, Yan H, Zhang D, et al. (2013) Preparation of V cathode material LiNi0.5Mn1.5O4 by an oxalic acid-pretreated solid-state method for lithium-ion secondary battery[J]. Journal of power sources, 224 (Feb.15):13-19. [CrossRef] [Google Scholar]
  9. J. B. Fei, Y. Cui, X. H. Yan, et al. (2010) Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment [J]. Advanced Materials, 20(3):452-456. [CrossRef] [Google Scholar]
  10. Cuizhi Y L, Sun Z, Zhuang Q C. (2011) Electrochemical properties of a 4.7 V-class LiNi0.5Mn1.5O4 positive electrode material for gigh power Li-ion battery[J]. Journal of Inorganic and Organometallic Polymers and Materials, 21(4):893-899. [CrossRef] [Google Scholar]
  11. Boyano I, Blazquez J A, Meatza I D, et al. (2010) Preparation of C-LiFePO4/polypyrrole lithium rechargeable cathode by consecutive potential steps electrodeposition[J]. Journal of power sources, 195(16):p.5351-5359. [CrossRef] [Google Scholar]
  12. Chi L H, Dinh N N, Brutti S, et al. (2010) Synthesis, characterization and electrochemical properties of V LiNi0.5Mn1.5O4 cathode material in lithium-ion batteries[J]. Electrochimica Acta, 55(18):5110-5116. [CrossRef] [Google Scholar]
  13. Hwang B J, Wu Y W, Venkateswarlu M, et al. (2009) Influence of synthesis conditions on electrochemical properties of high-voltage Li1.02Ni0.5Mn1.5O4 spinel cathode material[J]. Journal of Power Sources, 193(2):828-833. [CrossRef] [Google Scholar]
  14. Yi T F, Xie Y, Ye M F, et al. (2011) Recent developments in the doping of LiNi0.5Mn1.5O4 cathode material for 5 V lithium-ion batteries[J]. ionics, 17(5):383-389. [CrossRef] [Google Scholar]
  15. Zhu Y Q, Cao T, Li Z, et al. (2018) Twodimensional SnO2/graphene heterostructures for highly reversible electrochemical lithium storage[J]. Science China Materials, 61: 1527-1535. [CrossRef] [Google Scholar]
  16. Chen D, Peng L, Yuan Y, et al. (2017) Twodimensional holey Co3O4 nanosheets for high-rate alkali-ion batteries: From rational synthesis to in situ probing. Nano Lett, 17: 3907–3913. [CrossRef] [PubMed] [Google Scholar]
  17. Zhu Y, Cao C. (2015) A simple synthesis of twodimensional ultrathin nickel cobaltite nanosheets for electrochemical lithium storage. Electrochim Acta, 176: 141–148. [CrossRef] [Google Scholar]
  18. Zhu Z, Qi lu, et al. (2014) Preparation of spherical hierarchical LiNi0.5Mn1.5O4 with high electrochemical performances by a novel composite co-precipitation method for 5V lithium ion secondary batteries[J]. Electrochim Acta 115: 290-296. [CrossRef] [Google Scholar]
  19. S, R, et al. (2013) High precision coulometry study of LiNi0.5Mn1.5O4/Li coin cells[J]. J Electrochem Soc 160(9): A1517-1513. [CrossRef] [Google Scholar]
  20. Gu Y J, Zang Q F, et al. (2014) Characterization and electrochemical properties of LiNi0.5Mn1.5O4 prepared by a carbonate Co-precipitation method[J]. Int J Electrochem Sci 9(12):7712-7724. [Google Scholar]
  21. Zhou G J, Yu T, et al. (2020) Effect of carbon nanotubes content on rate performance of spherical LiNi0.5Mn1.5O4 cathode material[J]. Journal of Heilongjiang University of Science and Technology 30(01):71-78. [Google Scholar]
  22. Fauteux D G, Massucco A, et al. (1997) Flexible synthesis of mixed metal oxides illustrated for LiMn2O4 and LiCoO2[J]. J Appl Electrochem 27(5): 543-549. [CrossRef] [Google Scholar]
  23. Zhou L, Zhao D, Lou X W. (2012) LiNi0.5Mn1.5O4 Hollow structures as high-performance cathodes for lithium-ion batteries[J]. Angew Chem Int Ed 51(1): 239-241. [CrossRef] [Google Scholar]
  24. Ding Y L, Zhao X B, et al. (2011) Double-shelled hollow microspheres of LiMn2O4 for highperformance lithium ion batteries[J]. J Mater Chem 21(26): 9475-9479. [CrossRef] [Google Scholar]
  25. Lee E, Persson K A. (2013) Solid-solution Li intercalation as a function of cation order/disorder in the high-voltage LixNi0.5Mn1.5O4 spinel[J]. Chem Mater 25(14): 2885-2889. [CrossRef] [Google Scholar]
  26. Kim J H, Huq A, et al. (2014) Integrated nanodomains of disordered and ordered spinel phases in LiNi0.5Mn1.5O4 for Li-ion batteries[J]. Chem Mater 26(15): 4377-4386. [CrossRef] [Google Scholar]
  27. Zhang X, Zheng H, et al. (2011) Flame synthesis of 5 V spinel-LiNi0.5Mn1.5O4 cathode-materials for lithium-ion rechargeable-batteries[J]. P Combust Inst 33(2): 1867-1874. [CrossRef] [Google Scholar]
  28. Kim J H, Myung S T, Sun Y K. (2004) Molten salt synthesis of LiNi0.5Mn1.5O4 spinel for 5 v class cathode material of li-ion secondary battery. Electrochim Acta 49(2): 219-227. [CrossRef] [Google Scholar]
  29. Menzel M, Schlifke A, et al. (2013) Surface and indepth characterization of lithium-ion battery cathodes at different cycle states using confocal micro-X-ray fluorescence-X-ray absorption near edge structure analysis[J]. Spectrochim Acta B 85: 62-70. [CrossRef] [Google Scholar]
  30. King’ondu, Cecil K, et al. (2011) Light-assisted synthesis of metal oxide hierarchical structures and their catalytic applications[J]. J Am Chem Soc 133(12): 4186-4189. [CrossRef] [Google Scholar]
  31. Jin L, Xu L, et al. (2010) Titanium containing γMnO2 (TM) hollow spheres: one-step synthesis and catalytic activities in Li/air batteries and oxidative chemical reactions[J]. Adv Funct Mater 20(19): 3373-3382. [CrossRef] [Google Scholar]
  32. Liu H, Wang J, et al. (2016) Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: The critical effects of surface orientations and particle size[J]. ACS Appl Mater Interfaces 8(7): 4661-4675. [CrossRef] [Google Scholar]
  33. Santhanam R, Rambabu B. (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material[J]. J Power Sources 195(17): 5442-5451. [CrossRef] [Google Scholar]
  34. Xiao J, Chen X, et al. (2012) High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder[J]. Adv Mater 24(16): 2109-2116. [CrossRef] [PubMed] [Google Scholar]
  35. Zhao Q, Ye N, et al. (2010) Oxalate coprecipitation process synthesis of 5 V cathode material LiNi0.5Mn1.5O4 and its performance[J]. Rare Metal Mat Eng 39(10): 1715-1718. [CrossRef] [Google Scholar]
  36. Amdouni N, Zaghib K, et al. (2007) Magnetic properties of LiNi0.5Mn1.5O4 spinels prepared by wet chemical methods[J]. J Magn Magn Mater 309(1): 100-105. [CrossRef] [Google Scholar]
  37. Rosedhi N D, Idris N H, et al. (2016) Disordered spinel LiNi0.5Mn1.5O4 cathode with improved rate performance for lithium-ion batteries[J]. Electrochim Acta 206: 374-380. [CrossRef] [Google Scholar]
  38. Lian F, Zhang F, et al. (2017) Constructing a heterostructural LiNi0.4Mn1.6O4−δ material from concentration-gradient framework to significantly improve its cycling performance[J]. ACS Appl Mater Inter 9(18): 15822-15829. [CrossRef] [Google Scholar]
  39. Kunduraci M, Al-Sharab J F, Amatucci G G. (2006) High-power nanostructured LiMn2-xNixO4 highvoltage lithium-ion battery electrode materials: Electrochemical impact of electronic conductivity and morphology[J]. Chem. Mater 18(15): 3585-3592. [CrossRef] [Google Scholar]
  40. Seyyedhosseinzadeh H, Mahboubi F, Azadmehr A. (2013) Diffusion mechanism of lithium ions in LiNi0.5Mn1.5O4[J]. Electrochim Acta 108: 867-875. [CrossRef] [Google Scholar]
  41. Erickson E M, Sclar H, et al. (2017) Hightemperature treatment of Li-rich cathode materials with ammonia: improved capacity and mean voltage stability during cycling[J]. Adv Energy Mater 7(18): 708-718. [CrossRef] [Google Scholar]
  42. Zhou G J, Yu T, et al. (2019) Effect of calcination temperature on the structure and electrical Properties of LiNi0.5Mn1.5O4 material[J]. Journal of Heilongjiang University of Science and Technology 29(04):424-429. [Google Scholar]
  43. Reed J, Ceder G. (2004) Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation[J]. Chem Rev 104(10): 4513-4534. [CrossRef] [PubMed] [Google Scholar]
  44. Goodenough J B, Kim Y. (2010) Cheminform abstract: challenges for rechargeable Li batteries[J]. ChemInform 41(31): 587-603. [CrossRef] [Google Scholar]
  45. Liu J, Wang S, et al. (2016) The effect of boron doping on structure and electrochemical performance of lithium-rich layered oxide materials[J]. ACS Appl Mater Inter 8(28): 1800818017. [Google Scholar]
  46. Zhang Y, Dong P, et al. (2017) Combustion combined with ball milling to produce nanoscale La2O3 coated on LiMn2O4 for optimized Li-ion storage performance at high temperature[J]. J Appl Electrochem 48(2): 135-145. [CrossRef] [Google Scholar]
  47. Chong J, Xun S, et al. (2013) Surface stabilized LiNi0.5Mn1.5O4 cathode materials with high-rate capability and long cycle life for lithium ion batteries[J]. Nano Energy 2(2): 283-293. [CrossRef] [Google Scholar]
  48. Li L, Xu M, et al. (2015) High-performance lithiumrich layered oxide materials: effects of chelating agents on microstructure and electrochemical properties[J]. Electrochim Acta 174: 446-455. [CrossRef] [Google Scholar]
  49. Kumar S, Nayak P K, et al. (2014) Temperature and potential dependence electrochemical impedance studies of LiMn2O4[J]. J Appl Electrochem 44(1): 61-71. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.