Open Access
Issue
E3S Web Conf.
Volume 213, 2020
2nd International Conference on Applied Chemistry and Industrial Catalysis (ACIC 2020)
Article Number 01012
Number of page(s) 6
Section Industrial Catalysis and Chemical Substance R&D and Application
DOI https://doi.org/10.1051/e3sconf/202021301012
Published online 01 December 2020
  1. Bulletin of China’s Ecological Environmental Condition. 2012-2018. http://www.mee.gov.cn/hjzl/zghjzkgb/lnzghjzkgb/ [Google Scholar]
  2. China Statistical Yearbook.2009-2018. http://www.stats.gov.cn/tjsj/ndsj/ [Google Scholar]
  3. Annual Report of Ecological Environmental Statistics. 2017. http://www.mee.gov.cn/hjzl/sthjzk/sthjtjnb/ [Google Scholar]
  4. M. Kang, D. Kim, E. Park, J. Kim, J. Yie, S. Kim, L. Hopeweeks, E. Eyring, Two-stage catalyst system for selective catalytic reduction of NOx by NH3 at low temperatures, Applied Catalysis B: Environmental, 68 (2006) 21-27. [CrossRef] [Google Scholar]
  5. P. Denton, Giroir-Fendler A., Schuurman, Y., Praliaud, H., Mirodatos, C., Primet, M., A redox pathway for selective NOx reduction: stationary and transient experiments performed on a supported Pt catalysts., Applied Catalysis A: General, 220 (2001) 141-152. [CrossRef] [Google Scholar]
  6. N. Macleod, Lambert, R.M., Lean reduction with CO+H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts, Applied Catalysis B: Environmental, 35 (2002) 269-279. [CrossRef] [Google Scholar]
  7. V.A. Kondratenko, Baerns, M., Mechanistic insights into the formation of N2O and N2 in NO reduction by NH3 over a polycrystalline platinum catalyst, Applied Catalysis B: Environmental, 70 (2007) 111-118. [CrossRef] [Google Scholar]
  8. F. Liu, H. He, Z. Lian, W. Shan, L. Xie, K. Asakura, W. Yang, H. Deng, Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3, Journal of Catalysis, 307 (2013) 340-351. [CrossRef] [Google Scholar]
  9. D.K. Pappas, T. Boningari, P. Boolchand, P.G. Smirniotis, Novel manganese oxide confined interweaved titania nanotubes for the low-temperature Selective Catalytic Reduction (SCR) of NOx by NH3, Journal of Catalysis, 334 (2016) 1-13. [CrossRef] [Google Scholar]
  10. T. Boningari, D.K. Pappas, P.G. Smirniotis, Metal oxide-confined interweaved titania nanotubes M/TNT (M = Mn, Cu, Ce, Fe, V, Cr, and Co) for the selective catalytic reduction of NOx in the presence of excess oxygen, Journal of Catalysis, 365 (2018) 320-333. [CrossRef] [Google Scholar]
  11. L.-Y. Lin, C.-Y. Lee, Y.-R. Zhang, H. Bai, Aerosol-assisted deposition of Mn-Fe oxide catalyst on TiO2 for superior selective catalytic reduction of NO with NH3 at low temperatures, Catalysis Communications, 111 (2018) 36-41. [CrossRef] [Google Scholar]
  12. G. Yang, H. Zhao, X. Luo, K. Shi, H. Zhao, W. Wang, Q. Chen, H. Fan, T. Wu, Promotion effect and mechanism of the addition of Mo on the enhanced low temperature SCR of NOx by NH3 over MnOx/γ-Al2O3 catalysts, Applied Catalysis B: Environmental, 245 (2019) 743-752. [CrossRef] [Google Scholar]
  13. M. Kang, E.D. Park, J.M. Kim, J.E. Yie, Cu–Mn mixed oxides for low temperature NO reduction with NH3, Catal Today, 111 (2006) 236-241. [CrossRef] [Google Scholar]
  14. G. Xie, Liu, Z., Zhu, Z., Liu, Q., Ge, J., Huang, Z., Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent-I. Deactivation of SCR activity by SO2 at low-temperatures Journal of Catalysis, 224 (2004) 36-41. [Google Scholar]
  15. R.K.L. Singoredjo, F. Kapteijn, J. Moulijn, Alumina supported manganese oxides for the lowtemperature selective catalytic reduction of nitric oxide with ammonia, Applied Catalysis B:Environmental, 1 (1992) 297-316. [CrossRef] [Google Scholar]
  16. F. Cao, J. Xiang, S. Su, P. Wang, S. Hu, L. Sun, Ag modified Mn–Ce/γ-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature, Fuel Processing Technology, 135 (2015) 66-72. [CrossRef] [Google Scholar]
  17. F. Cao, J. Xiang, S. Su, P. Wang, L. Sun, S. Hu, S. Lei, The activity and characterization of MnOx– CeO2–ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3, Chemical Engineering Journal, 243 (2014) 347-354. [CrossRef] [Google Scholar]
  18. F. Cao, S. Su, J. Xiang, P. Wang, S. Hu, L. Sun, A. Zhang, The activity and mechanism study of Fe– Mn–Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3, Fuel, 139 (2015) 232-239. [CrossRef] [Google Scholar]
  19. R. Jin, Y. Liu, Z. Wu, H. Wang, T. Gu, Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: a comparative study, Chemosphere, 78 (2010) 1160-1166. [CrossRef] [PubMed] [Google Scholar]
  20. M.E. Gálvez, M.J. Lázaro, R. Moliner, Novel activated carbon-based catalyst for the selective catalytic reduction of nitrogen oxide, Catal Today, 102-103 (2005) 142-147. [CrossRef] [Google Scholar]
  21. Q. Guo, W. Jing, Y. Hou, Z. Huang, G. Ma, X. Han, D. Sun, On the nature of oxygen groups for NH3-SCR of NO over carbon at low temperatures, Chemical Engineering Journal, 270 (2015) 41-49. [CrossRef] [Google Scholar]
  22. Y. Su, B. Fan, L. Wang, Y. Liu, B. Huang, M. Fu, L. Chen, D. Ye, MnOx supported on carbon nanotubes by different methods for the SCR of NO with NH3, Catal Today, 201 (2013) 115-121. [CrossRef] [Google Scholar]
  23. Iwamoto M, Furukawa H, Mine Y, et al. Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide[J]. Journal of the Chemical Society Chemical Communications, 1986. [Google Scholar]
  24. C.-K. Seo, B. Choi, H. Kim, C.-H. Lee, C.-B. Lee, Effect of ZrO2 addition on de-NOx performance of Cu-ZSM-5 for SCR catalyst, Chemical Engineering Journal, 191 (2012) 331-340. [CrossRef] [Google Scholar]
  25. G.J. Cavataio G, Patterson J E, et al, SAE Technical Paper Series, in: SAE International SAE World Congress & Exhibition, 2007. [Google Scholar]
  26. W. Mu, J. Zhu, S. Zhang, Y. Guo, L. Su, X. Li, Z. Li, Novel proposition on mechanism aspects over Fe– Mn/ZSM-5 catalyst for NH3-SCR of NOx at low temperature: rate and direction of multifunctional electron-transfer-bridge and in situ DRIFTS analysis, Catal Sci Technol, 6 (2016)7532-7548. [CrossRef] [Google Scholar]
  27. Du, H. Qu, Q. Liu, Q. Zhong, W. Ma, Synthesis, activity and hydrophobicity of Fe-ZSM-5@silicalite-1 for NH3-SCR, Chemical Engineering Journal, 262 (2015) 1199-1207. [CrossRef] [Google Scholar]
  28. Post J E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc Natl Acad Sci, 1999, 96(7): 3447-3454. [CrossRef] [Google Scholar]
  29. Tompsett D, Parker S, Islam M S. Surface properties of α-MnO2: relevance to catalytic and supercapacitor behaviour[J]. Journal of Materials Chemistry A, 2014, 2(37):15509-15518. [CrossRef] [Google Scholar]
  30. Wei Y, Liu J, Su W, et al. Controllable synthesis of Ce-doped alpha-MnO2 for low-temperature selective catalytic reduction of NO. Catal Sci Technol, 2017, 7: 1565-1572. [CrossRef] [Google Scholar]
  31. Jablonska M, Palkovits R. It is no laughing matter: Nitrous oxide formation in diesel engines and advances in its abatement over rhodium-based catalysts. Catal Sci Technol, 2016, 6: 7671-7687. [CrossRef] [Google Scholar]
  32. Singoredjo L, Korver R, Kapteijn F, et al. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl Catal B, 1992.1(4):297-316. [CrossRef] [Google Scholar]
  33. Zhu Y, Zhang Y, Xiao R, et al. Novel holmium-modified Fe-Mn/TiO2 catalysts with a broad temperature window and high sulfur dioxide tolerance for low-temperature SCR[J]. Catalysis Communications, 2017, 88:64-67. [CrossRef] [Google Scholar]
  34. Zhanggen Huang, Zhenping Zhu, Zhenyu Liu. Combined effect of HO and SO on VO/AC catalysts for NO reduction with ammonia at lower temperatures[J]. Applied Catalysis B Environmental, 2002, 39(4):361-368. [CrossRef] [Google Scholar]
  35. Joshi S Y, Kumar A, Luo J, et al. New insights into the mechanism of NH3-SCR over Cu-and Fe-zeolite catalyst: Apparent negative activation energy at high temperature and catalyst unitdesign consequences. Appl Catal B, 2018, 226: 565-574. [CrossRef] [Google Scholar]
  36. Liu F, He H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst: Reaction mechanism and H2O/SO2 inhibition mechanism study[J]. Catalysis Today, 2010, 153(3–4):70-76. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.