Open Access
Issue
E3S Web Conf.
Volume 213, 2020
2nd International Conference on Applied Chemistry and Industrial Catalysis (ACIC 2020)
Article Number 01026
Number of page(s) 10
Section Industrial Catalysis and Chemical Substance R&D and Application
DOI https://doi.org/10.1051/e3sconf/202021301026
Published online 01 December 2020
  1. Lin Xiaoqing, Li Hong, Zhan Haolin, Du Shijia, Huang Yu-qing, Chen Zhong. High-Resolution Pure Shift NMR Spectroscopy and Its Applications [J]. Chinese Journal of Magnetic Resonance, 2019, 36(04): 425-36. (In Chinese) [Google Scholar]
  2. Li Zhenwei, Hu Daoyu, Summer Liming, Study on chemical shift imaging and T2WI monitoring MR mediated absolute ethanol ablation in rabbits [J]. (in Chinese) Radiology practice, 2007, 22(04): 350-353. (In Chinese) [Google Scholar]
  3. B C L. Calculating nuclear magnetic resonance chemical shifts in solvated systems [J]. Magnetic resonance in chemistry: MRC, 2020, 58(7). [Google Scholar]
  4. Pennanen T, Vaara J. Nuclear Magnetic Resonance Chemical Shift in an Arbitrary Electronic Spin State [J]. Physical review letters, 2008, 100: 133002. [CrossRef] [PubMed] [Google Scholar]
  5. letters, 2008, 100: 133002. [CrossRef] [PubMed] [Google Scholar]
  6. Marell D J, Emond S J, Kulshrestha A, Hoye T R. Analysis of seven-membered lactones by computational nmr methods: Proton NMR chemical shift data are more discriminating than carbon [J]. Journal of Organic Chemistry, 2014, 79(2): 752-758. [CrossRef] [Google Scholar]
  7. Bowen S, Hilty C. Temporal chemical shift correlations in reactions studied by hyperpolarized nuclear magnetic resonance [J]. Analytical Chemistry, 2009, 81(11): 4543-4547. [CrossRef] [PubMed] [Google Scholar]
  8. Sundell G N, Vogeli B, Ivarsson Y Chi, C N. Vogeli B, Ivarsson Y, et al. The Sign of Nuclear Magnetic Resonance Chemical Shift Difference as a Determinant of the Origin of Binding Selectivity: Elucidation of the Position Dependence of Phosphorylation in Ligands Binding to Scribble PDZ1 [J]. Biochemistry, 2018, 57(1): 66-71. [CrossRef] [PubMed] [Google Scholar]
  9. Lundborg M, Widmalm, G. Structural analysis of glycans by NMR chemical shift prediction [J]. Analytical Chemistry, 2011, 83(5): 1514-1517. [CrossRef] [PubMed] [Google Scholar]
  10. Zarzycki P, Rustad, James R. Theoretical determination of the NMR spectrum of liquid ethanol [J]. Journal of Physical Chemistry A, 2009, 113(1): 291-297. [CrossRef] [Google Scholar]
  11. Ghanghas R, Jindal A, Vasudevan S. Geometry of Hydrogen Bonds in Liquid Ethanol Probed by Proton NMR Experiments [J]. Journal of Physical Chemistry B, 2020, 124(4): 662-667. [CrossRef] [Google Scholar]
  12. Bai Huaiyong, Zhou Ge, Wang Diansheng. Experimental study on NMR of different concentrations of ethanol-water solution [J]. Experimental Technology and Management, 2013, 30(08): 39-42. (In Chinese) [Google Scholar]
  13. Zhou Ge, Bai Huaiyong, Wang Diansheng. Experimental Investigation on NMR Detection of Ethanol Content in Ethanol Gasoline [J]. (in Chinese) Laboratory Research and Explore. (In Chinese) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.