Open Access
Issue
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03010
Number of page(s) 8
Section Environmental Chemistry and Environmental Pollution Analysis and Control
DOI https://doi.org/10.1051/e3sconf/202021803010
Published online 11 December 2020
  1. Villanueva-Millan, M.J., P. Perez-Matute, and J.A. Oteo, Gut microbiota: a key player in health and disease. A review focused on obesity. Journal of Physiology and Biochemistry, 2015. 71(3): p. 509-525. [Google Scholar]
  2. Sender, R., S. Fuchs, and R. Milo, Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell, 2016. 164(3): p. 337-340. [CrossRef] [PubMed] [Google Scholar]
  3. Zhang, T., et al., Beneficial Effect of Intestinal Fermentation of Natural Polysaccharides. Nutrients, 2018. 10(8). [Google Scholar]
  4. Lee, Y.K. and S.K. Mazmanian, Has the Microbiota Played a Critical Role in the Evolution of the Adaptive Immune System? Science, 2010. 330 (6012): p. 1768-1773. [CrossRef] [Google Scholar]
  5. Mentella, M.C., et al., Nutrition, IBD and Gut Microbiota: A Review. Nutrients, 2020. 12(4). [CrossRef] [Google Scholar]
  6. Gurung, M., et al., Role of gut microbiota in type 2 diabetes pathophysiology. Ebiomedicine, 2020. 51. [Google Scholar]
  7. Deng, W., et al., The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: a review. Molecular Biology Reports, 2008. 35(2): p. 265-274. [CrossRef] [PubMed] [Google Scholar]
  8. Mardis, E.R., The impact of next-generation sequencing technology on genetics. Trends in Genetics, 2008. 24(3): p. 133-141. [CrossRef] [Google Scholar]
  9. Ley, R.E., et al., Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(31): p. 11070-11075. [Google Scholar]
  10. Backhed, F., et al., The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(44): p. 15718-15723. [CrossRef] [PubMed] [Google Scholar]
  11. Ng, M., et al., Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2014. 384 (9945): p. 766-781. [CrossRef] [PubMed] [Google Scholar]
  12. Finkelstein, E.A., et al., Obesity and Severe Obesity Forecasts Through 2030. American Journal of Preventive Medicine, 2012. 42(6): p. 563-570. [CrossRef] [PubMed] [Google Scholar]
  13. Leocadio, P.C.L., et al., Obesity: More Than an Inflammatory, an Infectious Disease? Frontiers in Immunology, 2020. 10. [PubMed] [Google Scholar]
  14. Diaz-Rizzolo, D.A., et al., Healthy dietary pattern and their corresponding gut microbiota profile are linked to a lower risk of type 2 diabetes, independent of the presence of obesity. Clinical Nutrition, 2020. 39(2): p. 524-532. [CrossRef] [Google Scholar]
  15. Ghazizadeh, H., et al., Association between obesity categories with cardiovascular disease and its related risk factors in the MASHAD cohort study population. Journal of Clinical Laboratory Analysis, 2019. [Google Scholar]
  16. Yang, Z., et al., Trends in overweight and obesity by socioeconomic status in Year 6 school children, Australian Capital Territory, 2006-2018. Bmc Public Health, 2019. 19(1). [Google Scholar]
  17. Cortes, V.A., F. Barrera, and F. Nervi, Pathophysiological connections between gallstone disease, insulin resistance, and obesity. Obesity Reviews, 2020. 21(4). [CrossRef] [Google Scholar]
  18. Backhed, F., et al., Host-bacterial mutualism in the human intestine. Science, 2005. 307 (5717): p. 1915-1920. [CrossRef] [PubMed] [Google Scholar]
  19. Kim, B., H.-N. Choi, and J.-E. Yim, Effect of Diet on the Gut Microbiota Associated with Obesity. Journal of obesity & metabolic syndrome, 2019. 28(4): p. 216-224. [CrossRef] [PubMed] [Google Scholar]
  20. Sonnenburg, J.L. and F. Backhed, Diet-microbiota interactions as moderators of human metabolism. Nature, 2016. 535 (7610): p. 56-64. [CrossRef] [PubMed] [Google Scholar]
  21. Dominguez-Bello, M.G., et al., Development of the Human Gastrointestinal Microbiota and Insights From High-Throughput Sequencing. Gastroenterology, 2011. 140(6): p. 1713-1719. [CrossRef] [PubMed] [Google Scholar]
  22. Spor, A., O. Koren, and R. Ley, Unravelling the effects of the environment and host genotype on the gut microbiome. Nature Reviews Microbiology, 2011. 9(4): p. 279-290. [CrossRef] [PubMed] [Google Scholar]
  23. Yatsunenko, T., et al., Human gut microbiome viewed across age and geography. Nature, 2012. 486 (7402): p. 222-+. [CrossRef] [PubMed] [Google Scholar]
  24. Carding, S., et al., Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health and Disease, 2015. 26(Suppl. 2): p. 26191-Article No.: 26191. [CrossRef] [PubMed] [Google Scholar]
  25. Turnbaugh, P.J. and J.I. Gordon, The core gut microbiome, energy balance and obesity. Journal of Physiology-London, 2009. 587(17): p. 4153-4158. [CrossRef] [PubMed] [Google Scholar]
  26. Eckburg, P.B., et al., Diversity of the human intestinal microbial flora. Science, 2005. 308 (5728): p. 1635-1638. [CrossRef] [PubMed] [Google Scholar]
  27. Cardinelli, C.S., et al., Influence of Intestinal Microbiota on Body Weight Gain: a Narrative Review of the Literature. Obesity Surgery, 2015. 25(2): p. 346-353. [CrossRef] [PubMed] [Google Scholar]
  28. Macfarlane, S. and G.T. Macfarlane, Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 2003. 62(1): p. 67-72. [CrossRef] [Google Scholar]
  29. Kobyliak, N., et al., Probiotics in prevention and treatment of obesity: a critical view. Nutrition & Metabolism, 2016. 13. [PubMed] [Google Scholar]
  30. Tilg, H. and A. Kaser, Gut microbiome, obesity, and metabolic dysfunction. Journal of Clinical Investigation, 2011. 121(6): p. 2126-2132. [CrossRef] [PubMed] [Google Scholar]
  31. Ley, R.E., et al., Microbial ecology Human gut microbes associated with obesity. Nature, 2006. 444 (7122): p. 1022-1023. [CrossRef] [PubMed] [Google Scholar]
  32. Zhang, H., et al., Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences of the United States of America, 2009. 106(7): p. 2365-2370. [CrossRef] [PubMed] [Google Scholar]
  33. Duncan, S.H., et al., Human colonic microbiota associated with diet, obesity and weight loss. International Journal of Obesity, 2008. 32(11): p. 1720-1724. [CrossRef] [PubMed] [Google Scholar]
  34. Schwiertz, A., et al., Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity, 2010. 18(1): p. 190-195. [CrossRef] [PubMed] [Google Scholar]
  35. Collado, M.C., et al., Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. American Journal of Clinical Nutrition, 2008. 88(4): p. 894-899. [CrossRef] [Google Scholar]
  36. Turnbaugh, P.J., et al., An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 2006. 444 (7122): p. 1027-1031. [CrossRef] [PubMed] [Google Scholar]
  37. Santacruz, A., et al., Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. British Journal of Nutrition, 2010. 104(1): p. 83-92. [CrossRef] [Google Scholar]
  38. Liu, R., et al., Gut microbiome and serum metabolome alterations in obesity and after weightloss intervention. Nature Medicine, 2017. 23(7): p. 859-+. [CrossRef] [PubMed] [Google Scholar]
  39. Armougom, F., et al., Monitoring Bacterial Community of Human Gut Microbiota Reveals an Increase in Lactobacillus in Obese Patients and Methanogens in Anorexic Patients. Plos One, 2009. 4(9). [CrossRef] [PubMed] [Google Scholar]
  40. Balamurugan, R., et al., Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. British Journal of Nutrition, 2010. 103(3): p. 335-338. [CrossRef] [Google Scholar]
  41. Galley, J.D., et al., Maternal Obesity Is Associated with Alterations in the Gut Microbiome in Toddlers. Plos One, 2014. 9(11). [CrossRef] [PubMed] [Google Scholar]
  42. Kalliomaki, M., et al., Early differences in fecal microbiota composition in children may predict overweight. American Journal of Clinical Nutrition, 2008. 87(3): p. 534-538. [CrossRef] [Google Scholar]
  43. Turnbaugh, P.J., et al., Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host & Microbe, 2008. 3(4): p. 213-223. [CrossRef] [PubMed] [Google Scholar]
  44. Turnbaugh, P.J., et al., The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Science Translational Medicine, 2009. 1(6). [CrossRef] [PubMed] [Google Scholar]
  45. Jumpertz, R., et al., Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. American Journal of Clinical Nutrition, 2011. 94(1): p. 58-65. [CrossRef] [Google Scholar]
  46. Koo, S.H., et al., A pilot study to examine the association between human gut microbiota and the host’s central obesity. JGH open : an open access journal of gastroenterology and hepatology, 2019. 3(6): p. 480-487. [PubMed] [Google Scholar]
  47. Hildebrandt, M.A., et al., High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity. Gastroenterology, 2009. 137(5): p. 1716-1724. [CrossRef] [PubMed] [Google Scholar]
  48. Nadal, I., et al., Shifts in clostridia, bacteroides and immunoglobulin-coating fecal bacteria associated with weight loss in obese adolescents. International Journal of Obesity, 2009. 33(7): p. 758-767. [CrossRef] [PubMed] [Google Scholar]
  49. Roediger, W.E., Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut, 1980. 21(9): p. 793-8. [CrossRef] [PubMed] [Google Scholar]
  50. Nagpal, R., et al., Gut Microbiome Composition in Non-human Primates Consuming a Western or Mediterranean Diet. Frontiers in Nutrition, 2018. 5. [PubMed] [Google Scholar]
  51. Liu, B., et al., Western diet feeding influences gut microbiota profiles in apoE knockout mice. Lipids in Health and Disease, 2018. 17. [PubMed] [Google Scholar]
  52. Villamil, S.I., et al., Adverse effect of early-life highfat/high-carbohydrate (“Western”) diet on bacterial community in the distal bowel of mice. Nutrition Research, 2018. 50: p. 25-36. [CrossRef] [Google Scholar]
  53. Meslier, V., et al., Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut, 2020. [Google Scholar]
  54. Garcia-Mantrana, I., et al., Shifts on Gut Microbiota Associated to Mediterranean Diet Adherence and Specific Dietary Intakes on General Adult Population. Frontiers in Microbiology, 2018. 9. [PubMed] [Google Scholar]
  55. De Filippo, C., et al., Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(33): p. 14691-14696. [CrossRef] [PubMed] [Google Scholar]
  56. Zimmer, J., et al., A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. European Journal of Clinical Nutrition, 2012. 66(1): p. 53-60. [CrossRef] [PubMed] [Google Scholar]
  57. Jeffery, I.B. and P.W. O’Toole, Diet-Microbiota Interactions and Their Implications for Healthy Living. Nutrients, 2013. 5(1): p. 234-252. [CrossRef] [PubMed] [Google Scholar]
  58. Martens, E.C., et al., The Devil Lies in the Details: How Variations in Polysaccharide Fine-Structure Impact the Physiology and Evolution of Gut Microbes. Journal of Molecular Biology, 2014. 426(23): p. 3851-3865. [CrossRef] [PubMed] [Google Scholar]
  59. Topping, D.L. and P.M. Clifton, Short-chain fatty acids and human colonic function: Roles of resistant starch and nonstarch polysaccharides. Physiological Reviews, 2001. 81(3): p. 1031-1064. [CrossRef] [PubMed] [Google Scholar]
  60. Cook, S.I. and J.H. Sellin, Review article: short chain fatty acids in health and disease. Alimentary Pharmacology & Therapeutics, 1998. 12(6): p. 499-507. [CrossRef] [PubMed] [Google Scholar]
  61. de la Cuesta-Zuluaga, J., et al., Higher Fecal Short Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients, 2019. 11(1). [Google Scholar]
  62. McNeil, N.I., The contribution of the large intestine to energy supplies in man. The American journal of clinical nutrition, 1984. 39(2): p. 338-42. [CrossRef] [PubMed] [Google Scholar]
  63. Flint, H.J., et al., Microbial degradation of complex carbohydrates in the gut. Gut Microbes, 2012. 3(4): p. 289-306. [CrossRef] [Google Scholar]
  64. Walker, A.W., et al., pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Applied and Environmental Microbiology, 2005. 71(7): p. 3692-3700. [CrossRef] [PubMed] [Google Scholar]
  65. den Besten, G., et al., The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 2013. 54(9): p. 2325-2340. [CrossRef] [PubMed] [Google Scholar]
  66. Hong, Y.H., et al., Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology, 2005. 146(12): p. 5092-5099. [CrossRef] [PubMed] [Google Scholar]
  67. Gao, Z., et al., Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice. Diabetes, 2009. 58(7): p. 1509-1517. [CrossRef] [PubMed] [Google Scholar]
  68. Brown, A.J., et al., The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. Journal of Biological Chemistry, 2003. 278(13): p. 11312-11319. [CrossRef] [PubMed] [Google Scholar]
  69. Byrne, C.S., et al., The role of short chain fatty acids in appetite regulation and energy homeostasis. International Journal of Obesity, 2015. 39(9): p. 1331-1338. [CrossRef] [PubMed] [Google Scholar]
  70. Fernandes, J., et al., Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutrition & Diabetes, 2014. 4. [Google Scholar]
  71. Riva, A., et al., Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environmental Microbiology, 2017. 19(1): p. 95-105. [CrossRef] [PubMed] [Google Scholar]
  72. Barczynska, R., et al., Bacterial Microbiota and Fatty Acids in the Faeces of Overweight and Obese Children. Polish Journal of Microbiology, 2018. 67(3): p. 339-345. [CrossRef] [PubMed] [Google Scholar]
  73. Backhed, F., et al., Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(3): p. 979-984. [CrossRef] [PubMed] [Google Scholar]
  74. Winder, W.W. and D.G. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in Type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism, 1999. 277(1): p. E1-E10. [CrossRef] [Google Scholar]
  75. Boulange, C.L., et al., Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Medicine, 2016. 8. [PubMed] [Google Scholar]
  76. Parseus, A., et al., Microbiota-induced obesity requires farnesoid X receptor. Gut, 2017. 66(3): p. 429-437. [CrossRef] [PubMed] [Google Scholar]
  77. Thomas, C., et al., TGR5-Mediated Bile Acid Sensing Controls Glucose Homeostasis. Cell Metabolism, 2009. 10(3): p. 167-177. [CrossRef] [PubMed] [Google Scholar]
  78. Dumas, M.-E., et al., Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(33): p. 12511-12516. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.