Open Access
Issue
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03039
Number of page(s) 5
Section Environmental Chemistry and Environmental Pollution Analysis and Control
DOI https://doi.org/10.1051/e3sconf/202021803039
Published online 11 December 2020
  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. Nov 2018; 68(6):394-424. [CrossRef] [PubMed] [Google Scholar]
  2. Moo TA, Sanford R, Dang C, Morrow M. Overview of Breast Cancer Therapy. PET Clin. Jul 2018; 13(3):339-354. [CrossRef] [PubMed] [Google Scholar]
  3. Rojas K, Stuckey A. Breast Cancer Epidemiology and Risk Factors. Clin Obstet Gynecol. Dec 2016; 59(4):651-672. [CrossRef] [PubMed] [Google Scholar]
  4. Tao Z, Shi A, Lu C, Song T, Zhang Z, Zhao J. Breast Cancer: Epidemiology and Etiology. Cell Biochem Biophys. Jun 2015; 72(2):333-338. [CrossRef] [PubMed] [Google Scholar]
  5. Oldenburg RA, Meijers-Heijboer H, Cornelisse CJ, Devilee P. Genetic susceptibility for breast cancer: how many more genes to be found? Crit Rev Oncol Hematol. Aug 2007;63(2):125-149. [CrossRef] [PubMed] [Google Scholar]
  6. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. Mar 4 2011; 144(5):646-674. [Google Scholar]
  7. Raman D, Foo CH, Clement MV, Pervaiz S. Breast Cancer: A Molecular and Redox Snapshot. Antioxid Redox Signal. Aug 20 2016; 25(6):337-370. [CrossRef] [PubMed] [Google Scholar]
  8. Monaco ME. Fatty acid metabolism in breast cancer subtypes. Oncotarget. Apr 25 2017; 8(17): 29487-29500. [CrossRef] [PubMed] [Google Scholar]
  9. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. Jul 6 2012; 150(1):12-27. [CrossRef] [PubMed] [Google Scholar]
  10. Casaubon JT, Grewal US, Regan JP. BRCA 1 and 2. Stat Pearls. Treasure Island (FL): Stat Pearls Publishing Copyright © 2020, Stat Pearls Publishing LLC.; 2020. [Google Scholar]
  11. Engel C, Fischer C, Zachariae S, et al. Breast cancer risk in BRCA1/2 mutation carriers and noncarriers under prospective intensified surveillance. Int J Cancer. Feb 15 2020; 146(4):999-1009. [CrossRef] [PubMed] [Google Scholar]
  12. Huzarski T, Byrski T, Gronwald J, et al. Ten-year survival in patients with BRCA1-negative and BRCA1-positive breast cancer. J Clin Oncol. Sep 10 2013; 31(26):3191-3196. [CrossRef] [PubMed] [Google Scholar]
  13. Park JY, Zhang F, Andreassen PR. PALB2: the hub of a network of tumor suppressors involved in DNA damage responses. Biochim Biophys Acta. Aug 2014; 1846(1):263-275. [PubMed] [Google Scholar]
  14. Antoniou AC, Casadei S, Heikkinen T, et al. Breastcancer risk in families with mutations in PALB2. N Engl J Med. Aug 7 2014; 371(6):497-506. [CrossRef] [PubMed] [Google Scholar]
  15. Zhang K, Zhou J, Zhu X, et al. Germline mutations of PALB2 gene in a sequential series of Chinese patients with breast cancer. Breast Cancer Res Treat. Dec 2017; 166(3):865-873. [CrossRef] [PubMed] [Google Scholar]
  16. Sullivan MR, Bernstein KA. RAD-ical New Insights into RAD51 Regulation. Genes (Basel). Dec 13 2018; 9(12). [CrossRef] [Google Scholar]
  17. Sánchez-Bermúdez AI, Sarabia-Meseguer MD, García-Aliaga Á, et al. Mutational analysis of RAD51C and RAD51D genes in hereditary breast and ovarian cancer families from Murcia (southeastern Spain). Eur J Med Genet. Jun 2018; 61(6):355-361. [CrossRef] [Google Scholar]
  18. Li N, McInerny S, Zethoven M, et al. Combined Tumor Sequencing and Case-Control Analyses of RAD51C in Breast Cancer. J Natl Cancer Inst. Dec 1 2019; 111(12):1332-1338. [CrossRef] [PubMed] [Google Scholar]
  19. Malik SS, Masood N, Asif M, Ahmed P, Shah ZU, Khan JS. Expressional analysis of MLH1 and MSH2 in breast cancer. Curr Probl Cancer. Apr 2019; 43(2):97-105. [CrossRef] [PubMed] [Google Scholar]
  20. Weidner AE, Liggin ME, Zuniga BI, Tezak AL, Wiesner GL, Pal T. Breast cancer screening implications of risk modeling among female relatives of ATM and CHEK2 carriers. Cancer. Apr 15 2020; 126(8):1651-1655. [CrossRef] [PubMed] [Google Scholar]
  21. Aubrey BJ, Strasser A, Kelly GL. Tumor-Suppressor Functions of the TP53 Pathway. Cold Spring Harb Perspect Med. May 2 2016; 6(5). [CrossRef] [Google Scholar]
  22. Schon K, Tischkowitz M. Clinical implications of germline mutations in breast cancer: TP53. Breast Cancer Res Treat. Jan 2018; 167(2):417-423. [CrossRef] [PubMed] [Google Scholar]
  23. Bertucci F, Ng Cky, Patsouris A, et al. Genomic characterization of metastatic breast cancers. Nature. May 2019; 569 (7757):560-564. [CrossRef] [PubMed] [Google Scholar]
  24. Álvarez-Garcia V, Tawil Y, Wise HM, Leslie NR. Mechanisms of PTEN loss in cancer: It’s all about diversity. Semin Cancer Biol. Dec 2019; 59:66-79. [CrossRef] [PubMed] [Google Scholar]
  25. Worby CA, Dixon JE. [Google Scholar]
  26. Alowiri NH, Hanafy SM, Haleem RA, Abdellatif A. PIK3CA and PTEN Genes Expressions in Breast Cancer. Asian Pac J Cancer Prev. Sep 1 2019; 20(9):2841-2846. [CrossRef] [PubMed] [Google Scholar]
  27. Ngeow J, Sesock K, Eng C. Breast cancer risk and clinical implications for germline PTEN mutation carriers. Breast Cancer Res Treat. Aug 2017; 165(1):1-8. [CrossRef] [PubMed] [Google Scholar]
  28. Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. Aug 1 2010; 429(3):403-417. [CrossRef] [PubMed] [Google Scholar]
  29. Verma S, Bakshi D, Sharma V, et al. Genetic variants of DNAH11 and LRFN2 genes and their association with ovarian and breast cancer. Int J Gynaecol Obstet. Jan 2020; 148(1):118-122. [CrossRef] [PubMed] [Google Scholar]
  30. Seifi S, Pouya F, Rahmani M, et al. Association of cyclin-dependent kinase inhibitor 2A/B with increased risk of developing breast cancer. J Cell Physiol. Jun 2020; 235(6):5141-5145. [CrossRef] [Google Scholar]
  31. Ouni N, Ben Chaaben A, Ayari F, et al. MICA-129 Met/Val polymorphism could be a genetic biomarker for Familial Breast Cancer in the Tunisian population. Int J Immunogenet. Feb 11 2020. [Google Scholar]
  32. Shenoy S. CDH1 (E-Cadherin) Mutation and Gastric Cancer: Genetics, Molecular Mechanisms and Guidelines for Management. Cancer Manag Res. 2019; 11: 10477-10486. [Google Scholar]
  33. Figueiredo J, Melo S, Carneiro P, et al. Clinical spectrum and pleiotropic nature of CDH1 germline mutations. J Med Genet. Apr 2019; 56(4):199-208. [CrossRef] [PubMed] [Google Scholar]
  34. Corso G, Intra M, Trentin C, Veronesi P, Galimberti V. CDH1 germline mutations and hereditary lobular breast cancer. Fam Cancer. Apr 2016;15(2):215-219. [CrossRef] [PubMed] [Google Scholar]
  35. Ivanišević J, Kotur-Stevuljević J, Stefanović A, et al. Association of paraoxonase 1 and oxidative stress with acute kidney injury in premature asphyxiated neonates. Chem Biol Interact. Jun 25 2017; 272:47-52. [CrossRef] [PubMed] [Google Scholar]
  36. Farmohammadi A, Momeni A, Bahmani B, Ghorbani H, Ramzanpour R. Association of PON1-L55M Genetic Variation and Breast Cancer Risk: A Case Control Trial. Asian Pac J Cancer Prev. Jan 1 2020; 21(1):255-258. [CrossRef] [PubMed] [Google Scholar]
  37. Pan X, Huang L, Li M, et al. The Association between PON1 (Q192R and L55M) Gene Polymorphisms and Risk of Cancer: A Meta Analysis Based on 43 Studies. Biomed Res Int. 2019;2019: 5897505. [Google Scholar]
  38. Fletcher JI, Williams RT, Henderson MJ, Norris MD, Haber M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist Updat. May 2016; 26:1-9. [CrossRef] [PubMed] [Google Scholar]
  39. Zeliha KP, Dilek O, Ezgi O, Halil K, Cihan U, Gul O. Association between ABCB1, ABCG2 carrier protein and COX-2 enzyme gene polymorphisms and breast cancer risk in a Turkish population. Saudi Pharm J. Feb 2020; 28(2):215-219. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.