Open Access
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03041
Number of page(s) 11
Section Environmental Chemistry and Environmental Pollution Analysis and Control
Published online 11 December 2020
  1. Hardy J. and D. Allsop, AMYLOID DEPOSITION AS THE CENTRAL EVENT IN THE ETIOLOGY OF ALZHEIMERS-DISEASE. Trends in Pharmacological Sciences, 1991. 12(10): p. 383-388. [CrossRef] [PubMed] [Google Scholar]
  2. Ow, S.Y. and D.E. Dunstan, A brief overview of amyloids and Alzheimer’s disease. Protein Science, 2014. 23(10): p. 1315-1331. [CrossRef] [Google Scholar]
  3. Haque, R., S.N. Uddin, and A. Hossain, Amyloid Beta (Aβ) and Oxidative Stress: Progression of Alzheimer’s Disease. [Google Scholar]
  4. Murpy M. and H. LeVine III, Alzheimer’s disease and the β-amyloid peptide. J Alzheimers Dis, 2010. 19(1): p. 311-323. [CrossRef] [PubMed] [Google Scholar]
  5. Guo, L., J. Tian, and H. Du, Mitochondrial dysfunction and synaptic transmission failure in Alzheimer’s disease. Journal of Alzheimer’s Disease, 2017. 57(4): p. 1071-1086. [CrossRef] [Google Scholar]
  6. Lambon Ralph, M.A., et al., Homogeneity and heterogeneity in mild cognitive impairment and Alzheimer’s disease: a cross ‐ sectional and longitudinal study of 55 cases. Brain, 2003. 126(11): p. 2350-2362. [CrossRef] [PubMed] [Google Scholar]
  7. Goure, W.F., et al., Targeting the proper amyloidbeta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimer’s research & therapy, 2014. 6(4): p. 42. [CrossRef] [Google Scholar]
  8. Banerjee, S., et al., Interaction of Aβ42 with Membranes Triggers the Self-Assembly into Oligomers. International journal of molecular sciences, 2020. 21(3): p. 11-29. [CrossRef] [Google Scholar]
  9. Duering, M., et al., Mean age of onset in familial Alzheimer’s disease is determined by amyloid beta 42. Neurobiology of aging, 2005. 26(6): p. 785-788. [CrossRef] [PubMed] [Google Scholar]
  10. De Strooper, B., Loss ‐ of ‐ function presenilin mutations in Alzheimer disease: Talking Point on the role of presenilin mutations in Alzheimer disease. EMBO reports, 2007. 8(2): p. 141-146. [CrossRef] [PubMed] [Google Scholar]
  11. Kopan R. and M.X.G. Ilagan, γ-Secretase: proteasome of the membrane? Nature reviews Molecular cell biology, 2004. 5(6): p. 499-504. [CrossRef] [PubMed] [Google Scholar]
  12. Nalivaeva, N.N. and A.J. Turner, The amyloid precursor protein: a biochemical enigma in brain development, function and disease. FEBS letters, 2013. 587(13): p. 2046-2054. [CrossRef] [PubMed] [Google Scholar]
  13. Bernabeu-Zornoza, A., et al., Physiological and pathological effects of amyloid-β species in neural stem cell biology. Neural Regeneration Research, 2019. 14(12): p. 2035. [CrossRef] [PubMed] [Google Scholar]
  14. Cheignon, C., et al., Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox biology, 2018. 14: p. 450-464. [CrossRef] [PubMed] [Google Scholar]
  15. Selkoe, D.J., Normal and abnormal biology of the beta-amyloid precursor protein. Annual review of neuroscience, 1994. 17(1): p. 489-517. [CrossRef] [PubMed] [Google Scholar]
  16. Glenner, G.G. and C.W. Wong, Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochemical and biophysical research communications, 1984. 122(3): p. 1131-1135. [CrossRef] [PubMed] [Google Scholar]
  17. Vassar, R., et al., β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. science, 1999. 286 (5440): p. 735-741. [Google Scholar]
  18. Lin, X., et al., Human aspartic protease memapsin 2 cleaves the β-secretase site of β-amyloid precursor protein. Proceedings of the National Academy of Sciences, 2000. 97(4): p. 1456-1460. [CrossRef] [Google Scholar]
  19. Selkoe, D.J. and M.S. Wolfe, Presenilin: running with scissors in the membrane. Cell, 2007. 131(2): p. 215-221. [CrossRef] [PubMed] [Google Scholar]
  20. Willem, M., et al., η-Secretase processing of APP inhibits neuronal activity in the hippocampus. Nature, 2015. 526 (7573): p. 443-447. [CrossRef] [PubMed] [Google Scholar]
  21. Uversky, V.N., Natively unfolded proteins: a point where biology waits for physics. Protein science, 2002. 11(4): p. 739-756. [CrossRef] [PubMed] [Google Scholar]
  22. Harrison, P.M., et al., Conformational propagation with prion‐like characteristics in a simple model of protein folding. Protein Science, 2001. 10(4): p. 819-835. [CrossRef] [Google Scholar]
  23. Klimov, D.K. and D. Thirumalai, Dissecting the assembly of Aβ16–22 amyloid peptides into antiparallel β sheets. Structure, 2003. 11(3): p. 295-307. [CrossRef] [PubMed] [Google Scholar]
  24. Tekirian, T.L., et al., Toxicity of pyroglutaminated amyloid beta-peptides 3(pE)-40 and-42 is similar to that of A beta 1-40 and -42. Journal of Neurochemistry, 1999. 73(4): p. 1584-1589. [CrossRef] [PubMed] [Google Scholar]
  25. Goure, W.F., et al., Targeting the proper amyloidbeta neuronal toxins: a path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Research & Therapy, 2014. 6(4). [Google Scholar]
  26. McGowan, E., et al., Aβ42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron, 2005. 47(2): p. 191-199. [CrossRef] [PubMed] [Google Scholar]
  27. Chiang, P.K., M.A. Lam, and Y. Luo, The many faces of amyloid β in Alzheimer’s disease. Current molecular medicine, 2008. 8(6): p. 580-584. [CrossRef] [PubMed] [Google Scholar]
  28. Forloni G. and C. Balducci, Alzheimer’s disease, oligomers, and inflammation. Journal of Alzheimer’s Disease, 2018. 62(3): p. 1261-1276. [CrossRef] [Google Scholar]
  29. Selkoe, D.J. and J. Hardy, The amyloid hypothesis of Alzheimer’s disease at 25 years. Embo Molecular Medicine, 2016. 8(6): p. 595-608. [CrossRef] [PubMed] [Google Scholar]
  30. Karran, E., M. Mercken, and B. De Strooper, The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nature reviews Drug discovery, 2011. 10(9): p. 698-712. [CrossRef] [PubMed] [Google Scholar]
  31. Walton, C.C., et al., Senescence as an Amyloid Cascade: The Amyloid Senescence Hypothesis. Frontiers in Cellular Neuroscience, 2020. 14: p. 129. [CrossRef] [PubMed] [Google Scholar]
  32. Hardy, J.A. and G.A. Higgins, ALZHEIMERSDISEASE THE AMYLOID CASCADE HYPOTHESIS. Science, 1992. 256 (5054): p. 184-185. [CrossRef] [Google Scholar]
  33. Moreth, J., et al., Globular and Protofibrillar A beta Aggregates Impair Neurotransmission by Different Mechanisms. Bio chemistry, 2013. 52(8): p. 1466-1476. [Google Scholar]
  34. Tomic, J.L., et al., Soluble fibrillar oligomer levels are elevated in Alzheimer’s disease brain and correlate with cognitive dysfunction. Neurobiology of Disease, 2009. 35(3): p. 352-358. [CrossRef] [PubMed] [Google Scholar]
  35. Wolfe, A., et al., P2 ‐ 043: A quantitative assay selective for amyloid oligomer species differentiates cerebrospinal fluid from Alzheimer’s disease and age ‐ matched normal. Alzheimer’s & Dementia, 2012. 8(4S_Part_8): p. P278-P278. [CrossRef] [Google Scholar]
  36. Yates, E.A., E.M. Cucco, and J. Legleiter, Point Mutations in A beta Induce Polymorphic Aggregates at Liquid/Solid Interfaces. Acs Chemical Neuroscience, 2011. 2(6): p. 294-307. [CrossRef] [PubMed] [Google Scholar]
  37. Lee, S., E.J. Fernandez, and T.A. Good, Role of aggregation conditions in structure, stability, and toxicity of intermediates in the A beta fibril formation pathway. Protein Science, 2007. 16(4): p. 723-732. [CrossRef] [Google Scholar]
  38. Norlin, N., et al., Aggregation and fibril morphology of the Arctic mutation of Alzheimer’s A beta peptide by CD, TEM, STEM and in situ AFM. Journal of Structural Biology, 2012. 180(1): p. 174-189. [CrossRef] [PubMed] [Google Scholar]
  39. Aizenstein, H.J., et al., Frequent Amyloid Deposition Without Significant Cognitive Impairment Among the Elderly. Archives of Neurology, 2008. 65(11): p. 1509-1517. [CrossRef] [PubMed] [Google Scholar]
  40. Pike, K.E., et al., beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain, 2007. 130: p. 2837-2844. [CrossRef] [PubMed] [Google Scholar]
  41. Xiao, Y., et al., Aβ (1–42) fibril structure illuminates self-recognition and replication of amyloid in Alzheimer’s disease. Nature structural & molecular biology, 2015. 22(6): p. 499-505. [CrossRef] [PubMed] [Google Scholar]
  42. Bitan, G., et al., Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proceedings of the National Academy of Sciences, 2003. 100(1): p. 330-335. [CrossRef] [Google Scholar]
  43. Bitan, G., S.S. Vollers, and D.B. Teplow, Elucidation of primary structure elements controlling early amyloid β-protein oligomerization. Journal of Biological Chemistry, 2003. 278(37): p. 34882-34889. [CrossRef] [Google Scholar]
  44. Lublin, A.L. and S. Gandy, Amyloid‐β Oligomers: Possible Roles as Key Neurotoxins in Alzheimer’s Disease. Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine: A Journal of Translational and Personalized Medicine, 2010. 77(1): p. 43-49. [CrossRef] [Google Scholar]
  45. Harmeier, A., et al., Role of amyloid-β glycine 33 in oligomerization, toxicity, and neuronal plasticity. Journal of Neuroscience, 2009. 29(23): p. 7582-7590. [CrossRef] [Google Scholar]
  46. Fu, Z., et al., Capping of Aβ42 oligomers by small molecule inhibitors. Biochemistry, 2014. 53(50): p. 7893-7903. [CrossRef] [PubMed] [Google Scholar]
  47. Gravina, S.A., et al., Amyloid β Protein (Aβ) in Alzheimeri’s Disease Brain Biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ40 or Aβ42 (43). Journal of Biological Chemistry, 1995. 270(13): p. 7013-7016. [CrossRef] [Google Scholar]
  48. Xu, F., et al., Cerebral vascular amyloid seeds drive amyloid β-protein fibril assembly with a distinct antiparallel structure. Nature communications, 2016. 7(1): p. 1-10. [Google Scholar]
  49. Xu, F., et al., Early-onset formation of parenchymal plaque amyloid abrogates cerebral microvascular amyloid accumulation in transgenic mice. Journal of Biological Chemistry, 2014. 289(25): p. 17895-17908. [CrossRef] [Google Scholar]
  50. Bertini, I., et al., A new structural model of Aβ40 fibrils. Journal of the American Chemical Society, 2011. 133(40): p. 16013-16022. [CrossRef] [PubMed] [Google Scholar]
  51. Kajava, A.V., U. Baxa, and A.C. Steven, β arcades: recurring motifs in naturally occurring and disease‐ related amyloid fibrils. The FASEB journal, 2010. 24(5): p. 1311-1319. [CrossRef] [Google Scholar]
  52. Lu J.-X., et al., Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell, 2013. 154(6): p. 1257-1268. [CrossRef] [PubMed] [Google Scholar]
  53. Ma B. and R. Nussinov, Stabilities and conformations of Alzheimer’s β-amyloid peptide oligomers (Aβ16–22, Aβ16–35, and Aβ10–35): sequence effects. Proceedings of the National Academy of Sciences, 2002. 99(22): p. 14126-14131. [CrossRef] [Google Scholar]
  54. Hamley, I.W., The amyloid beta peptide: a chemist’s perspective. Role in Alzheimer’s and fibrillization. Chemical reviews, 2012. 112(10): p. 5147-5192. [CrossRef] [PubMed] [Google Scholar]
  55. Bernstein, S.L., et al., Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nature chemistry, 2009. 1(4): p. 326-331. [CrossRef] [PubMed] [Google Scholar]
  56. Oda, T., et al., Clusterin (apoJ) alters the aggregation of amyloid β-peptide (Aβ1-42) and forms slowly sedimenting Aβ complexes that cause oxidative stress. Experimental neurology, 1995. 136(1): p. 22-31. [CrossRef] [PubMed] [Google Scholar]
  57. Narayan, P., et al., Single molecule characterization of the interactions between amyloid-β peptides and the membranes of hippocampal cells. Journal of the American Chemical Society, 2013. 135(4): p. 1491-1498. [CrossRef] [PubMed] [Google Scholar]
  58. Walsh, D.M., et al., Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal longterm potentiation in vivo. Nature, 2002. 416 (6880): p. 535-539. [CrossRef] [PubMed] [Google Scholar]
  59. Caughey B. and P.T. LansburyJr, Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annual review of neuroscience, 2003. 26(1): p. 267-298. [CrossRef] [PubMed] [Google Scholar]
  60. Stefani, M., Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. The FEBS journal, 2010. 277(22): p. 4602-4613. [CrossRef] [PubMed] [Google Scholar]
  61. Cheng, I.H., et al., Accelerating amyloid-β fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. Journal of Biological Chemistry, 2007. 282(33): p. 23818-23828. [CrossRef] [Google Scholar]
  62. Treusch, S., D.M. Cyr, and S. Lindquist, Amyloid deposits: protection against toxic protein species? Cell cycle, 2009. 8(11): p. 1668-1674. [CrossRef] [PubMed] [Google Scholar]
  63. Pepys, M.B., Amyloidosis, in Annual Review of Medicine. 2006. p. 223-241. [CrossRef] [Google Scholar]
  64. Gharibyan, A.L., et al., Lysozyme amyloid oligomers and fibrils induce cellular death via different apoptotic/necrotic pathways. Journal of molecular biology, 2007. 365(5): p. 1337-1349. [CrossRef] [PubMed] [Google Scholar]
  65. Glabe, C.G., Structural classification of toxic amyloid oligomers. Journal of Biological Chemistry, 2008. 283(44): p. 29639-29643. [CrossRef] [Google Scholar]
  66. Meyer-Luehmann, M., et al., Exogenous induction of cerebral ß-amyloidogenesis is governed by agent and host. Science, 2006. 313 (5794): p. 1781-1784. [CrossRef] [Google Scholar]
  67. Walker, L., et al., Modeling Alzheimer’s disease and other proteopathies in vivo: is seeding the key? Amino acids, 2002. 23(1-3): p. 87-93. [CrossRef] [PubMed] [Google Scholar]
  68. Yankner, B.A., Mechanisms of neuronal degeneration in Alzheimer’s disease. Neuron, 1996. 16(5): p. 921-932. [CrossRef] [PubMed] [Google Scholar]
  69. Malchiodi-Albedi, F., et al., Lipid raft disruption protects mature neurons against amyloid oligomer toxicity. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease, 2010. 1802(4): p. 406-415. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.