Open Access
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03044
Number of page(s) 5
Section Environmental Chemistry and Environmental Pollution Analysis and Control
Published online 11 December 2020
  1. Marcello, et al., Human heart failure: Is cell therapy a valid option? Biochemical Pharmacology, 2014. [Google Scholar]
  2. Shirakabe, A., et al., Aging and Autophagy in the Heart. Circ Res, 2016. 118(10): p. 1563-76. [Google Scholar]
  3. Linton, P.J., et al., This old heart: Cardiac aging and autophagy. J Mol Cell Cardiol, 2015. 83: p. 44-54. [CrossRef] [PubMed] [Google Scholar]
  4. Bersell, K., et al., Neuregulin1/ErbB4 Signaling Induces Cardiomyocyte Proliferation and Repair of Heart Injury. Cell, 2009. 138(2): p. 257-270. [CrossRef] [PubMed] [Google Scholar]
  5. Mahmoud, A.I., et al., Meisl regulates postnatal cardiomyocyte cell cycle arrest. Nature, 2013. 497 (7448): p. 249-253. [Google Scholar]
  6. Tian, Y., et al., A micro RNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med, 2015. 7(279): p. 279-38. [CrossRef] [Google Scholar]
  7. Stanley, W.C., F.A. Recchia, and G.D. Lopaschuk, Myocardial substrate metabolism in the normal and failing heart. Physiol Rev, 2005. 85(3): p. 1093-129. [CrossRef] [PubMed] [Google Scholar]
  8. James, T.N., Structure and function of the sinus node, AV node and his bundle of the human heart: part II-function. Prog Cardiovasc Dis, 2003. 45(4): p. 32760. [CrossRef] [Google Scholar]
  9. Sedmera, D., Function and form in the developing cardiovascular system. Cardiovasc Res, 2011. 91(2): p. 252-9. [CrossRef] [PubMed] [Google Scholar]
  10. Schirone, L., et al., A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxid Med Cell Longev, 2017. 2017: p. 3920195. [CrossRef] [PubMed] [Google Scholar]
  11. Prabhu, S.D. and N.G. Frangogiannis, The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ Res, 2016. 119(1): p. 91-112. [CrossRef] [PubMed] [Google Scholar]
  12. Später, D., et al., How to make a cardiomyocyte. Development, 2014. 141(23): p. 4418-31. [CrossRef] [PubMed] [Google Scholar]
  13. Uygur A. and R.T. Lee, Mechanisms of Cardiac Regeneration. Developmental Cell, 2016. 36(4): p. 362-374. [CrossRef] [PubMed] [Google Scholar]
  14. Polizzotti, B.D., et al., A cryoinjury model in neonatal mice for cardiac translational and regeneration research. Nature Protocols, 2016. 11(3): p. 542-552. [CrossRef] [PubMed] [Google Scholar]
  15. Jopling, C., et al., Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature, 2010. 464 (7288): p. 606-9. [CrossRef] [PubMed] [Google Scholar]
  16. Porrello, E.R., et al., Transient Regenerative Potential of the Neonatal Mouse Heart. Science, 2011. 331 (6020): p. 1078-1080. [CrossRef] [PubMed] [Google Scholar]
  17. Velayutham, N., E.J. Agnew, and K.E. Yutzey, Postnatal Cardiac Development and Regenerative Potential in Large Mammals. Pediatric Cardiology, 2019. 40(7): p. 1345-1358. [CrossRef] [PubMed] [Google Scholar]
  18. Ye, L., et al., Early Regenerative Capacity in the Porcine Heart. Circulation, 2018. 138(24): p. 2798-2808. [CrossRef] [PubMed] [Google Scholar]
  19. Bergmann, O., et al., Dynamics of Cell Generation and Turnover in the Human Heart. Cell, 2015. 161(7): p. 1566-1575. [CrossRef] [PubMed] [Google Scholar]
  20. Mahmoud, A.I., et al., Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration. Dev Cell, 2015. 34(4): p. 387-99. [CrossRef] [PubMed] [Google Scholar]
  21. Ieda, M., Heart development and regeneration via cellular interaction and reprogramming. Keio J Med, 2013. 62(4): p. 99-106. [CrossRef] [PubMed] [Google Scholar]
  22. Wojciechowska, A., A. Braniewska, and K. Kozar Kamińska, Micro RNA in cardiovascular biology and disease. Adv Clin Exp Med, 2017. 26(5): p. 865-874. [CrossRef] [PubMed] [Google Scholar]
  23. Chen, J., et al., mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res, 2013. 112(12): p. 1557-66. [CrossRef] [PubMed] [Google Scholar]
  24. Porrello, E.R., et al., Mi R-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res, 2011. 109(6): p. 670-9. [CrossRef] [PubMed] [Google Scholar]
  25. Hudson, J.E. and E.R. Porrello, Periostin paves the way for neonatal heart regeneration. Cardiovasc Res, 2017. 113(6): p. 556-558. [CrossRef] [PubMed] [Google Scholar]
  26. Shimazaki, M., et al., Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med, 2008. 205(2): p. 295-303. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.