Open Access
Issue
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03043
Number of page(s) 5
Section Environmental Chemistry and Environmental Pollution Analysis and Control
DOI https://doi.org/10.1051/e3sconf/202021803043
Published online 11 December 2020
  1. Subklewe M.; Von Bergwelt-Baildon M.; Humpe A. Chimeric Antigen Receptor T Cells: A Race to Revolutionize Cancer Therapy. Transfus Med Hemother, v. 46, n. 1, p. 15-24, Feb 2019. ISSN 1660-3796. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/31244578 >. [CrossRef] [Google Scholar]
  2. Brudno, J. N.; Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol, v. 15, n. 1, p. 31-46, Jan 2018. ISSN 1759-4782. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28857075 >. [CrossRef] [PubMed] [Google Scholar]
  3. Dotti, G. et al. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev, v. 257, n. 1, p. 107-26, Jan 2014. ISSN 1600-065X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24329793 >. [CrossRef] [PubMed] [Google Scholar]
  4. Thanindratarn, P. et al. Chimeric antigen receptor T (CAR-T) cell immunotherapy for sarcomas: From mechanisms to potential clinical applications. Cancer Treat Rev, v. 82, p. 101934, Jan 2020. ISSN 1532-1967. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/31794912 >. [CrossRef] [PubMed] [Google Scholar]
  5. CAR T Cells: Engineering Patients’ Immune Cells to Treat Their Cancers. 2019. Disponível em: < https://www.cancer.gov/about-cancer/treatment/research/car-t-cells >. [Google Scholar]
  6. Kite Pharma, Incorporated, YESCARTA (axicabtagene ciloleucel), [package insert]. U.S. Food and Drug Administration website., Disponível em: < https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescartaaxicabtagene-ciloleucel >. [Google Scholar]
  7. Novartis Pharmaceuticals Corporation, KYMRIAH (tisagenlecleucel), U.S. Food and Drug Administration website., Disponível em: < https://www.fda.gov/vaccines-bloodbiologics/cellular-gene-therapy-products/kymriahtisagenlecleucel >. [Google Scholar]
  8. Wang, Z. et al. New development in CAR-T cell therapy. J Hematol Oncol, v. 10, n. 1, p. 53 02 2017. ISSN 1756-8722. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/28222796 >. [CrossRef] [PubMed] [Google Scholar]
  9. Ruella, M. et al. Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19directed immunotherapies. J Clin Invest, v. 126, n. 10, p. 3814-3826, 10 2016. ISSN 1558-8238. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27571406 >. [CrossRef] [PubMed] [Google Scholar]
  10. Codd, A. S. et al. Cancer stem cells as targets for immunotherapy. Immunology, v. 153, n. 3, p. 304314 03 2018. ISSN 1365-2567. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29150846 >. [CrossRef] [Google Scholar]
  11. Yu, Z. et al. Cancer stem cells. Int J Biochem Cell Biol, v. 44, n. 12, p. 2144-51, Dec 2012. ISSN 18785875. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/22981632 >. [CrossRef] [PubMed] [Google Scholar]
  12. Houghton, J. et al. Stem cells and cancer. Semin Cancer Biol, v. 17, n. 3, p. 191-203, Jun 2007. ISSN 1044-579X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/16762563 >. [CrossRef] [PubMed] [Google Scholar]
  13. Nandy, S. B.; Lakshmanaswamy R. Cancer Stem Cells and Metastasis. Prog Mol Biol Transl Sci, v. 151, p. 137-176, 2017. ISSN 1878-0814. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29096892 >. [CrossRef] [PubMed] [Google Scholar]
  14. Baccelli, I. et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol, v. 31, n. 6, p. 539-44, Jun 2013. ISSN 1546-1696. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/23609047 >. [CrossRef] [PubMed] [Google Scholar]
  15. Zhao J. Cancer stem cells and chemoresistance: The smartest survives the raid. Pharmacol Ther, v. 160, p. 145-58, Apr 2016. ISSN 1879-016X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26899500 >. [CrossRef] [PubMed] [Google Scholar]
  16. Steinbichler, T. B. et al. Therapy resistance mediated by cancer stem cells. Semin Cancer Biol, v. 53, p. 156-167, 12 2018. ISSN 1096-3650. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/30471331 >. [CrossRef] [PubMed] [Google Scholar]
  17. MuÑoz L. et al. Interleukin-3 receptor alpha chain (CD123) is widely expressed in hematologic malignancies. Haematologica, v. 86, n. 12, p. 1261-9, Dec 2001. ISSN 0390-6078. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/11726317 >. [PubMed] [Google Scholar]
  18. Jordan, C. T. et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia, v. 14, n. 10, p. 1777-84, Oct 2000. ISSN 0887-6924. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/11021753 >. [CrossRef] [PubMed] [Google Scholar]
  19. Testa, U. et al. Elevated expression of IL3Ralpha in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood, v. 100, n. 8, p. 2980-8, Oct 2002. ISSN 0006-4971. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/12351411 >. [CrossRef] [Google Scholar]
  20. Mardiros, A. et al. T cells expressing CD123specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. Blood, v. 122, n. 18, p. 3138-48, Oct 2013. ISSN 1528-0020. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24030378 >. [CrossRef] [Google Scholar]
  21. Tettamanti, S. et al. Targeting of acute myeloid leukaemia by cytokine-induced killer cells redirected with a novel CD123-specific chimeric antigen receptor. Br J Haematol, v. 161, n. 3, p. 389401 May 2013. ISSN 1365-2141. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/23432359 >. [CrossRef] [Google Scholar]
  22. Pizzitola, I. et al. Chimeric antigen receptors against CD33/CD123 antigens efficiently target primary acute myeloid leukemia cells in vivo. Leukemia, v. 28, n. 8, p. 1596-605, Aug 2014. ISSN 1476-5551. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24504024 >. [CrossRef] [PubMed] [Google Scholar]
  23. Suetsugu, A. et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun, v. 351, n. 4, p. 820-4, Dec 2006. ISSN 0006-291X. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/17097610 >. [CrossRef] [Google Scholar]
  24. Ishiwata, T. et al. Pancreatic cancer stem cells: features and detection methods. Pathol Oncol Res, v. 24, n. 4, p. 797-805, Oct 2018. ISSN 1532-2807. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29948612 >. [CrossRef] [PubMed] [Google Scholar]
  25. Singh, S. K. et al. Identification of human brain tumour initiating cells. Nature, v. 432, n. 7015, p. 396-401, Nov 2004. ISSN 1476-4687. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/15549107 >. [CrossRef] [PubMed] [Google Scholar]
  26. Brugnoli, F. et al. CD133 in Breast Cancer Cells: More than a Stem Cell Marker. J Oncol, v. 2019, p. 7512632 2019. ISSN 1687-8450. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/31636668 >. [CrossRef] [Google Scholar]
  27. Li, X. et al. Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): a systematic review and meta-analysis. Int J Clin Exp Pathol, v. 8, n. 10, p. 12084-92, 2015. ISSN 1936-2625. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26722393 >. [PubMed] [Google Scholar]
  28. Liu, Q. et al. Expression of CD133, PAX2, ESA, and GPR30 in invasive ductal breast carcinomas. Chin Med J (Engl), v. 122, n. 22, p. 2763-9, Nov 2009. ISSN 2542-5641. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/19951611 >. [PubMed] [Google Scholar]
  29. Nadal, R. et al. CD133 expression in circulating tumor cells from breast cancer patients: potential role in resistance to chemotherapy. Int J Cancer, v. 133, n. 10, p. 2398-407, Nov 2013. ISSN 1097-0215. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/23661576 >. [CrossRef] [PubMed] [Google Scholar]
  30. Wang, Y. et al. CD133-directed CAR T cells for advanced metastasis malignancies: A phase I trial. Oncoimmunology, v. 7, n. 7, p. e1440169, 2018. ISSN 2162-4011. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29900044 >. [CrossRef] [PubMed] [Google Scholar]
  31. Vora, P. et al. The Rational Development of CD133-Targeting Immunotherapies for Glioblastoma. Cell Stem Cell, v. 26, n. 6, p. 832844.e6, Jun 2020. ISSN 1875-9777. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/32464096 >. [CrossRef] [Google Scholar]
  32. ZÖLLER M. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells. Front Immunol, v. 6, p. 235 2015. ISSN 1664-3224. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26074915 >. [CrossRef] [PubMed] [Google Scholar]
  33. Wang, H. et al. Minicircle DNA-Mediated CAR T Cells Targeting CD44 Suppressed Hepatocellular Carcinoma Both in vitro and in vivo. Onco Targets Ther, v. 13, p. 3703-3716, 2020. ISSN 1178-6930. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/32440140 >. [CrossRef] [Google Scholar]
  34. Wang, C. Y. et al. The subpopulation of CD44positive cells promoted tumorigenicity and metastatic ability in lung adenocarcinoma. J Chin Med Assoc, v. 82, n. 3, p. 196-201, Mar 2019. ISSN 1728-7731. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/30908413 >. [CrossRef] [PubMed] [Google Scholar]
  35. Parte, S. C. et al. Ovarian Cancer Stem Cells: Unraveling a Germline Connection. Stem Cells Dev, v. 26, n. 24, p. 1781-1803, 12 2017. ISSN 1557-8534. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29078734 >. [CrossRef] [PubMed] [Google Scholar]
  36. Hoofd, C. et al. CD44 promotes chemoresistance in T-ALL by increased drug efflux. Exp Hematol, v. 44, n. 3, p. 166-71.e17, Mar 2016. ISSN 1873-2399. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26708679 >. [CrossRef] [PubMed] [Google Scholar]
  37. Zhao, Q. et al. Prognostic value of the expression of cancer stem cell-related markers CD133 and CD44 in hepatocellular carcinoma: From patients to patientderived tumor xenograft models. Oncotarget, v. 7, n. 30, p. 47431-47443, Jul 2016. ISSN 1949-2553. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/27329727 >. [CrossRef] [PubMed] [Google Scholar]
  38. Tjhay, F. et al. CD44 variant 6 is correlated with peritoneal dissemination and poor prognosis in patients with advanced epithelial ovarian cancer. Cancer Sci, v. 106, n. 10, p. 1421-8, Oct 2015. ISSN 1349-7006. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/26250934 >. [CrossRef] [PubMed] [Google Scholar]
  39. Casucci, M. et al. CD44v6-targeted T cells mediate potent antitumor effects against acute myeloid leukemia and multiple myeloma. Blood, v. 122, n. 20, p. 3461-72, Nov 2013. ISSN 1528-0020. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/24016461 >. [CrossRef] [Google Scholar]
  40. Porcellini, S. et al. CAR T Cells Redirected to CD44v6 Control Tumor Growth in Lung and Ovary Adenocarcinoma Bearing Mice. Front Immunol, v. 11, p. 99 2020. ISSN 1664-3224. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/32117253 >. [CrossRef] [PubMed] [Google Scholar]
  41. Bueno, C. et al. CD133-directed CAR T-cells for MLL leukemia: on-target, off-tumor myeloablative toxicity. Leukemia, v. 33, n. 8, p. 2090-2125, 08 2019. ISSN 1476-5551. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/30778134 >. [CrossRef] [PubMed] [Google Scholar]
  42. Hu, B. et al. Nucleofection with Plasmid DNA for CRISPR/Cas9-Mediated Inactivation of Programmed Cell Death Protein 1 in CD133-Specific CAR T Cells. Hum Gene Ther, v. 30, n. 4, p. 446-458, 04 2019. ISSN 1557-7422. Disponível em: < https://www.ncbi.nlm.nih.gov/pubmed/29706119 >. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.