Open Access
Issue
E3S Web Conf.
Volume 218, 2020
2020 International Symposium on Energy, Environmental Science and Engineering (ISEESE 2020)
Article Number 03049
Number of page(s) 6
Section Environmental Chemistry and Environmental Pollution Analysis and Control
DOI https://doi.org/10.1051/e3sconf/202021803049
Published online 11 December 2020
  1. Cho H, Mariotto AB, Schwartz LM, et al. When do changes in cancer survival mean progress? The insight from population incidence and mortality[J]. Journal of the National Cancer Institute Monographs, 2014, 2014(49):187-197. [CrossRef] [PubMed] [Google Scholar]
  2. Van Opstal D, Van Maarle MC, Lichtenbelt K, et al. Origin and clinical relevance of chromosomal aberrations other than the common trisomies detected by genome-wide NIPS: results of the TRIDENT study[J]. Genetics in Medicine, 2018, 20(5):480-485. [CrossRef] [Google Scholar]
  3. Schütz E, Fischer A, Beck J, et al. Graft-derived cellfree DNA, a noninvasive early rejection and graft damage marker in liver transplantation: A prospective, observational, multicenter cohort study[J]. PLoS medicine, 2017, 14(4):e1002286. [CrossRef] [PubMed] [Google Scholar]
  4. Chen Y-R, Yu S, Zhong S (2018) Profiling DNA methylation using bisulfite sequencing (BS-Seq), pp. 31-43, Springer. [Google Scholar]
  5. Chu Y, Corey DR. RNA sequencing: platform selection, experimental design, and data interpretation[J]. Nucleic acid therapeutics, 2012, 22(4):271-274. [CrossRef] [PubMed] [Google Scholar]
  6. Jiang P, Chan KA, Lo YD. Liver-derived cell-free nucleic acids in plasma: Biology and applications in liquid biopsies[J]. Journal of hepatology, 2019, 71(2):409-421. [CrossRef] [PubMed] [Google Scholar]
  7. Cristiano S, Leal A, Phallen J, et al. Genome-wide cell-free DNA fragmentation in patients with cancer[J]. Nature, 2019, 570 (7761):385-389. [CrossRef] [PubMed] [Google Scholar]
  8. Jiang P, Chan CW, Chan KA, et al. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients[J]. Proceedings of the National Academy of Sciences, 2015, 112(11):E1317-E1325. [CrossRef] [Google Scholar]
  9. Sun K, Jiang P, Cheng SH, et al. Orientation-aware plasma cell-free DNA fragmentation analysis in open chromatin regions informs tissue of origin[J]. Genome research, 2019, 29(3):418-427. [CrossRef] [PubMed] [Google Scholar]
  10. Andrews S (2010) Fast QC: a quality control tool for high throughput sequence data, Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom. [Google Scholar]
  11. Schubert M, Lindgreen S, Orlando L. Adapter Removal v2: rapid adapter trimming, identification, and read merging[J]. BMC Res Notes, 2016, 9:88. [CrossRef] [PubMed] [Google Scholar]
  12. Krueger F. Trim galore[J]. A wrapper tool around Cutadapt and Fast QC to consistently apply quality and adapter trimming to Fast Q files, 2015, 516:517. [Google Scholar]
  13. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4):357-359. [CrossRef] [PubMed] [Google Scholar]
  14. Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform[J]. bioinformatics, 2009, 25(14):1754-1760. [CrossRef] [PubMed] [Google Scholar]
  15. Xi Y, Li W. BSMAP: whole genome bisulfite sequence MAPping program[J]. BMC bioinformatics, 2009, 10(1):1-9. [PubMed] [Google Scholar]
  16. Hoffmann S, Otto C, Kurtz S, et al. Fast mapping of short sequences with mismatches, insertions and deletions using index structures[J]. PLoS Comput Biol, 2009, 5(9):e1000502. [CrossRef] [Google Scholar]
  17. Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications[J]. bioinformatics, 2011, 27(11):15711572. [CrossRef] [Google Scholar]
  18. Guo W, Fiziev P, Yan W, et al. BS-Seeker2: a versatile aligning pipeline for bisulfite sequencing data[J]. BMC genomics, 2013, 14(1):774. [CrossRef] [PubMed] [Google Scholar]
  19. Pfeifer GP. Defining driver DNA methylation changes in human cancer[J]. International journal of molecular sciences, 2018, 19(4):1166. [1] Cho H, Mariotto AB, Schwartz LM, et al. When do changes in cancer survival mean progress? The insight from population incidence and mortality[J]. Journal of the National Cancer Institute Monographs, 2014, 2014(49):187197. [CrossRef] [Google Scholar]
  20. Pfeifer GP. Defining driver DNA methylation changes in human cancer[J]. International journal of molecular sciences, 2018, 19(4):1166. [CrossRef] [Google Scholar]
  21. Hentze JL, Høgdall CK, Høgdall EV. Methylation and ovarian cancer: Can DNA methylation be of diagnostic use?[J]. Molecular and clinical oncology, 2019, 10(3):323-330. [PubMed] [Google Scholar]
  22. Sun K, Jiang P, Chan KC, et al. Plasma DNA tissue mapping by genome-wide methylation sequencing for noninvasive prenatal, cancer, and transplantation assessments[J]. Proc Natl Acad Sci U S A, 2015, 112(40):E5503-5512. [CrossRef] [PubMed] [Google Scholar]
  23. Liu X, Ren J, Luo N, et al. Comprehensive DNA methylation analysis of tissue of origin of plasma cellfree DNA by methylated CpG tandem amplification and sequencing (MCTA-Seq)[J]. Clinical Epigenetics, 2019, 11(1) [Google Scholar]
  24. Li W, Li Q, Kang S, et al. Cancer Detector: ultrasensitive and non-invasive cancer detection at the resolution of individual reads using cell-free DNA methylation sequencing data[J]. Nucleic Acids Res, 2018, 46(15):e89. [CrossRef] [PubMed] [Google Scholar]
  25. Chen X, Chang C-W, Spoerke JM, et al. Low-pass Whole-genome Sequencing of Circulating Cell-free DNA Demonstrates Dynamic Changes in Genomic Copy Number in a Squamous Lung Cancer Clinical Cohort[J]. Clinical Cancer Research, 2019, 25(7):2254-2263. [CrossRef] [Google Scholar]
  26. Snyder MW, Kircher M, Hill AJ, et al. Cell-free DNA Comprises an In Vivo Nucleosome Footprint that Informs Its Tissues-Of-Origin[J]. Cell, 2016, 164(12):57-68. [CrossRef] [PubMed] [Google Scholar]
  27. Mouliere F, Chandrananda D, Piskorz AM, et al. Enhanced detection of circulating tumor DNA by fragment size analysis[J]. Sci Transl Med, 2018, 10(466) [Google Scholar]
  28. Xu Z, Ge G, Guan B, et al. Noninvasive Detection and Localization of Genitourinary Cancers Using Urinary Sediment DNA Methylomes and Copy Number Profiles[J]. European Urology, 2020, 77(2):288-290. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.