Open Access
Issue
E3S Web Conf.
Volume 221, 2020
Energy Systems Environmental Impacts (ESEI 2020)
Article Number 03006
Number of page(s) 9
Section Power Engineering
DOI https://doi.org/10.1051/e3sconf/202022103006
Published online 17 December 2020
  1. Bystrov, A., Vostrov, K., Frolov, V., & Bistrov, A. (2019). The method of processing the droplet-air flow by non-equilibrium plasma. Paper presented at the E3S Web of Conferences, 140 doi:10.1051/e3sconf/201914010004 [Google Scholar]
  2. Frolov, V. Y., Ivanov, D. V., & Shibaev, M. A. (2014). Modeling the plasmachemical synthesis of nanopowdered materials using a combined plasmatron. Technical Physics Letters, 40(8), 676-679. doi:10.1134/S1063785014080185 [CrossRef] [Google Scholar]
  3. Grigoriev, A. V., Razumov, N. G., Popovich, A. A., & Samokhin, A. V. (2017). Obtaining of nb-16Si spherical powders alloy for additive technologies by mechanical alloying and spheroidization in electric arc discharge thermal plasma. ARPN Journal of Engineering and Applied Sciences, 12(23), 6644-6648. [Google Scholar]
  4. Promakhov, V., Zhukov, A., Ziatdinov, M., Zhukov, I., Schulz, N., Kovalchuk S, Perminov, A. (2019). Inconel 625/TiB2 metal matrix composites by direct laser deposition. Metals, 9(2) doi:10.3390/met9020141 [Google Scholar]
  5. Subbotin, D. I., Kuznetsov, V. E., Litvyakova, A. I., Cherepkova, I. A., Surov, A. V., Nakonechnyi, G. V., & Spodobin, V. A. (2017). Investigations of products of copper electrode erosion in an AC plasmatron. Technical Physics, 62(11), 1639-1642. doi:10.1134/S1063784217110275 [CrossRef] [Google Scholar]
  6. Klopotov, A. A., Ivanov, Y. F., Potekaev, A. I., Abzaev, Y. A., Kalashnikov, M. P., Chumaevskii, A. V., ... Klopotov, V. D. (2020). The use of low-temperature plasma in a combined technology for the formation of wear-resistant boroncontaining coatings. Surface and Coatings Technology, 389 doi:10.1016/j.surfcoat.2020.125576 [CrossRef] [Google Scholar]
  7. Kotelnikov, V. A., Kotelnikov, M. V., & Filippov, G. S. (2020). Flat-probe diagnostic methods for collisional plasma flowing from technological plasmatrons. Journal of Machinery Manufacture and Reliability, 49(1), 80-85. doi:10.3103/S1052618820010082 [CrossRef] [Google Scholar]
  8. Kuptsov, A. V., Volzhenin, A. V., Labusov, V. A., & Saprykin, A. I. (2020). Steel analysis by atomic emission spectrometry using a two-jet arc plasmatron with spark ablation. Journal of Analytical Atomic Spectrometry, 35(11), 2600-2605. doi:10.1039/d0ja00313a [Google Scholar]
  9. Matushkin, A. V., Anakhov, S. V., & Pyckin, Y. A. (2020). Study of the processes of high temperature material heating for plasma recycling doi:10.4028/www.scientific.net/MSF.989.775 [Google Scholar]
  10. Rakhadilov, B. K., Kenesbekov, A. B., Kowalevski, P., Ocheredko, Y. A., & Sagdoldina, Z. B. (2020). Development of air-plasma technology for hardening cutting tools by applying wear-resistant coatings. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 3(441), 54-62. doi:10.32014/2020.2518-170X.54 [Google Scholar]
  11. Schiller, S., Heisig, U., & Goedicke, K. (2020). ROLE OF PLASMATRON/MAGNETRON SYSTEMS IN PHYSICAL VAPOR DEPOSITION TECHNIQUES. Thin Solid Films Pap Presented at the Int Conf on Metall Coat San Francisco Calif Apr 3-7 1978, 54(1), 33-47. doi:10.1016/00406090(78)90274-2 [Google Scholar]
  12. Trenchev, G., & Bogaerts, A. (2020). Dual-vortex plasmatron: A novel plasma source for CO2conversion. Journal of CO2 Utilization, 39 doi:10.1016/j.jcou.2020.03.002 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.