Open Access
Issue
E3S Web Conf.
Volume 228, 2021
2020 International Conference on Climate Change, Green Energy and Environmental Sustainability (CCGEES 2020)
Article Number 01007
Number of page(s) 5
Section Research on Green Energy Utilization and Development Technology
DOI https://doi.org/10.1051/e3sconf/202122801007
Published online 13 January 2021
  1. Dong, S.A., He, X.J., Zhang, H.F., et al. (2018) Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A, 6: 15954-15960. [CrossRef] [Google Scholar]
  2. Wang, C.J., Liu, F., Chen, J.S., et al. (2020) A graphene-covalent organic framework hybrid for high-performance supercapacitors. Energy Storage Mater., 32: 448-457. [CrossRef] [Google Scholar]
  3. Shang, T.X., Xu, Y., Li, P., et al. (2020) A bio-derived sheet-like porous carbon with thin-layer pore walls for ultrahigh-power supercapacitors. Nano Energy, 70: 104531. [CrossRef] [Google Scholar]
  4. Shang, Z., An, X.Y., Zhang, H., et al. (2020) Houttuynia-derived nitrogen-doped hierarchically porous carbon for high-performance supercapacitor. Carbon, 161: 62-70. [CrossRef] [Google Scholar]
  5. Zhang, P., Zhu, Q.Z., Soomro, R.A., et al. (2020) In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors. Adv. Funct. Mater., 2000 922. [Google Scholar]
  6. Zhao, J., Jiang, Y.F., Fan, H., et al. (2017) Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure performance relationship. Adv. Mater., 29: 1604569. [CrossRef] [Google Scholar]
  7. Wang, Y.H., Liu, R.N., Tian, Y.D., et al. (2020) Heteroatoms-doped hierarchical porous carbon derived from chitin for flexible all-solid-state symmetric supercapacitors. Chem. Eng. J., 384: 123-263. [Google Scholar]
  8. Liu, B.Q., Zhang, Q., Wang, Z., et al. (2020) Nitrogen and sulfur-codoped porous carbon nanospheres with hierarchical micromesoporous structures and an ultralarge pore volume for high-performance supercapacitors. ACS Appl. Mater. Interfaces, 12: 8225-8232. [CrossRef] [Google Scholar]
  9. Huang, Y.B., Pachfule, P., Sun, J.K., et al. (2016) From covalent-organic frameworks to hierarchically porous B-doped carbons: a molten-salt approach. J. Mater. Chem. A, 4: 4273-4279. [CrossRef] [Google Scholar]
  10. Cui, C.X., Gao, Y., Li, J., et al. (2020) Origins of boosted charge storage on heteroatom-doped carbons. Angew. Chem. Int. Ed., 59: 7928-7933. [CrossRef] [Google Scholar]
  11. Li, J.X., Han, K.H., Wang, D., et al. (2020) Fabrication of high performance structural N-doped hierarchical porous carbon for supercapacitors. Carbon, 164: 42-50. [CrossRef] [Google Scholar]
  12. Lu, Y., Liang, J.N., Deng, S.F., et al. (2019) Hypercrosslinked polymers enabled microporedominant N, S co-doped porous carbon for ultrafast electron/ion transport supercapacitors. Nano Energy, 65: 103993. [Google Scholar]
  13. Wei, F., He, X.J., Bi, H.H., et al. (2020) 3D hierarchical carbons composed of cross-linked porous carbon nanosheets for supercapacitors. J. Power Sources, 474: 228698. [CrossRef] [Google Scholar]
  14. Wei, F., He, X.J., Ma, L.B., et al. (2020) 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. NanoMicro Lett., 12: 82. [Google Scholar]
  15. Gao, S.S., Tang, Y.K., Wang, L., et al. (2018) Coalbased hierarchical porous carbon synthesized with a soluble salt self-assembly-assisted method for high performance supercapacitors and Li-ion batteries. ACS Sustainable Chem. Eng., 6: 3255-3263. [CrossRef] [Google Scholar]
  16. Wang H.R., Yu, S.K., Xu, B. (2016) Hierarchical porous carbon materials prepared using nano-ZnO as a template and activation agent for ultrahigh power supercapacitors. Chem. Commun., 52: 11512-11515. [CrossRef] [Google Scholar]
  17. Zhao, G.Y., Chen, C., Yu, D.F., et al. (2018) One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy, 47: 547-555. [CrossRef] [Google Scholar]
  18. Liu, M.Y., Niu, J., Zhang, Z.P., et al. (2018) Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors. Nano Energy, 51: 366-372. [CrossRef] [Google Scholar]
  19. Gopalakrishnan, A., Raju, T.D., Badhulika, S. (2020) Green synthesis of nitrogen, sulfur-co-doped wormlike hierarchical porous carbon derived from ginger for outstanding supercapacitor performance. Carbon, 168: 209-219. [CrossRef] [Google Scholar]
  20. Yu, S.K., Sun, N., Hu, L.F., et al. (2018) Self-template and self-activation synthesis of nitrogen-doped hierarchical porous carbon for supercapacitors. J. Power Sources, 405: 132-141. [CrossRef] [Google Scholar]
  21. Sheng, L.Z., Jiang L.L., Wei, T., et al. (2017) Spatial charge storage within honeycomb-carbon frameworks for ultrafast supercapacitors with high energy and power densities. Adv. Energy Mater., 7: 1700668. [CrossRef] [Google Scholar]
  22. Xie, X.Y., He, X.J., Zhang, H.F., et al. (2018) Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors. Chem. Eng. J., 350: 49-56. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.