Open Access
Issue
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
Article Number 01006
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202122901006
Published online 25 January 2021
  1. Abukhait, J., Abdel-Qader, I., Oh, J.-s., and Abudayyeh, O. (2012). Road sign detection and shape recognition invariant to sign defects. In Electro/Information Technology (EIT), 2012 IEEE International Conference on, pages 1–6. IEEE. [Google Scholar]
  2. Basco´n, S. M., Rodr´ıguez, J. A., Arroyo, S. L., Caballero, A. F., and Lo´pez-Ferreras, F. (2010). An optimization on pictogram identification for the road-sign recognition task using svms. Computer Vision and Image Understanding, 114(3):373–383. [CrossRef] [Google Scholar]
  3. Belaroussi, R., Foucher, P., Tarel, J.-P., Soheilian, B., Charbonnier, P., and Paparoditis, N. (2010). Road sign detection in images: A case study. In Pattern Recognition (ICPR), 2010 20th International Conference on, pages 484–488. IEEE. [Google Scholar]
  4. Berkaya, S. K., Gunduz, H., Ozsen, O., Akinlar, C., and Gunal, S. (2016). On circular traffic sign detection and recognition. Expert Systems with Applications, 48:67–75. [CrossRef] [Google Scholar]
  5. Boumediene, M., Cudel, C., Basset, M., and Ouamri, A. (2013). Triangular traffic signs detection based on rsld algorithm. Machine vision and applications, 24(8):1721–1732. [CrossRef] [Google Scholar]
  6. Creusen, I. M., Wijnhoven, R. G., Herbschleb, E., and De With, P. (2010). Color exploitation in hog-based traffic sign detection. In Image Processing (ICIP), 2010 17th IEEE International Conference on, pages 2669–2672. IEEE. [Google Scholar]
  7. Dalal, N. and Triggs, B. (2005). Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 1, pages 886–893. IEEE. [Google Scholar]
  8. Deguchi, D., Shirasuna, M., Doman, K., Ide, I., and Murase, H. (2011). Intelligent traffic sign detector: Adaptive learning based on online gathering of training samples. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 72–77. IEEE. [Google Scholar]
  9. El Jaafari, I., El Ansari, M., Koutti, L., Ellahyani, A., and Charfi, S. (2016a). A novel approach for on-road vehicle detection and tracking. Int. J. Adv. Comput. Sci. Appl., 7(1):594–601. [Google Scholar]
  10. El Jaafari, I., El Ansari, M., Koutti, L., Mazoul, A., and Ellahyani, A. (2016b). Fast spatio-temporal stereo matching for advanced driver assistance systems. Neurocomputing, 194:24–33. [CrossRef] [Google Scholar]
  11. El Jaafari, I., Ellahyani, A., and Charfi, S. (2020). Parametric rectified nonlinear unit (prenu) for convolution neural networks. Signal, Image and Video Processing, pages 1–6. [Google Scholar]
  12. Ellahyani, A. and El Ansari, M. (2016). Complementary features for traffic sign detection and recognition. In 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), pages 1–6. IEEE. [Google Scholar]
  13. Ellahyani, A. and El Ansari, M. (2017a). Mean shift and log-polar transform for road sign detection. Multimedia Tools and Applications, 76(22):24495–24513. [CrossRef] [Google Scholar]
  14. Ellahyani, A. and El Ansari, M. (2017b). A new designed descriptor for road sign recognition. In 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), pages 1–6. IEEE. [Google Scholar]
  15. Ellahyani, A., El Ansari, M., and El Jaafari, I. (2016a). Traffic sign detection and recognition based on random forests. Applied Soft Computing, 46:805–815. [CrossRef] [Google Scholar]
  16. Ellahyani, A., El Ansari, M., El Jaafari, I., and Charfi, S. (2016b). Traffic sign detection and recognition using features combination and random forests. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 7(1):686–693. [CrossRef] [Google Scholar]
  17. Ellahyani, A., El Ansari, M., Lahmyed, R., and Tre´meau A. (2018). Traffic sign recognition method for intelligent vehicles. JOSA A, 35(11):1907–1914. [CrossRef] [Google Scholar]
  18. Fang, C.-Y., Chen, S.-W., and Fuh, C.-S. (2003). Road-sign detection and tracking. Vehicular Technology, IEEE Transactions on, 52(5):1329–1341. [CrossRef] [Google Scholar]
  19. Fleyeh, H. and Davami, E. (2011). Eigen-based traffic sign recognition. Intelligent Transport Systems, IET, 5(3):190–196. [CrossRef] [Google Scholar]
  20. Gao, B., Jiang, Z., and zhang, J. (2019). Traffic sign detection based on ssd. In Proceedings of the 2019 4th International Conference on Automation, Control and Robotics Engineering, pages 1–6. [Google Scholar]
  21. Gim, J., Hwang, M., Ko, B. C., and Nam J.-Y. (2015). Real-time speed-limit sign detection and recognition using spatial pyramid feature and boosted random forest. In Image Analysis and Recognition, pages 437–445. Springer. [CrossRef] [Google Scholar]
  22. Gonza´lez, A´., Garrido, M. A´., Llorca, D. F., Gavila´n, M., Ferna´ndez, J. P., Alcantarilla, P. F., Parra, I., Herranz, F., Bergasa, L. M., Sotelo, M. A´., et al. (2011). Automatic traffic signs and panels inspection system using computer vision. IEEE Transactions on intelligent transportation systems, 12(2):485–499. [CrossRef] [Google Scholar]
  23. Greenhalgh, J. and Mirmehdi, M. (2012). Real-time detection and recognition of road traffic signs. Intelligent Transportation Systems, IEEE Transactions on, 13(4):1498–1506. [CrossRef] [Google Scholar]
  24. Gudigar, A., Chokkadi, S., and Raghavendra, U. (2016a). A review on automatic detection and recognition of traffic sign. Multimedia Tools and Applications, 75(1):333–364. [CrossRef] [Google Scholar]
  25. Gudigar, A., Chokkadi, S., Raghavendra, U., and Acharya, U. R. (2016b). Multiple thresholding and subspace based approach for detection and recognition of traffic sign. Multimedia Tools and Applications, pages 1–19. [Google Scholar]
  26. Houben, S. (2011). A single target voting scheme for traffic sign detection. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 124–129. IEEE. [CrossRef] [Google Scholar]
  27. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., and Igel, C. (2013). Detection of traffic signs in real-world images: The german traffic sign detection benchmark. In Neural Networks (IJCNN), The 2013 International Joint Conference on, pages 1–8. IEEE. [Google Scholar]
  28. Hu, Z. and Li, N. (2016). Vision-based position computation from in-vehicle video log images for road sign inventory. IET Intelligent Transport Systems, 10(6):414–420. [CrossRef] [Google Scholar]
  29. Huang, Z., Yu, Y., Ye, S., and Liu, H. (2014). Extreme learning machine based traffic sign detection. In Multisensor Fusion and Information Integration for Intelligent Systems (MFI), 2014 International Conference on, pages 1–6. IEEE. [Google Scholar]
  30. Jin, Y., Fu, Y., Wang, W., Guo, J., Ren, C., and Xiang, X. (2020). Multi-feature fusion and enhancement single shot detector for traffic sign recognition. IEEE Access, 8:38931–38940. [CrossRef] [Google Scholar]
  31. Keller, C. G., Sprunk, C., Bahlmann, C., Giebel, J., and Baratof, G. (2008). Real-time recognition of us speed signs. In Intelligent Vehicles Symposium, 2008 IEEE, pages 518–523. IEEE. [Google Scholar]
  32. Khan, J. F., Bhuiyan, S., and Adhami, R. R. (2011). Image segmentation and shape analysis for road-sign detection. Intelligent Transportation Systems, IEEE Transactions on, 12(1):83–96. [CrossRef] [Google Scholar]
  33. Kumar, R. P., Sangeeth, M., Vaidhyanathan, K., and Pandian, M. A. (2019). Traffic sign and drowsiness detection using open-cv. TRAFFIC, 6(03). [Google Scholar]
  34. Lahmyed, R., El Ansari, M., and Ellahyani, A. (2019). A new thermal infrared and visible spectrum imagesbased pedestrian detection system. Multimedia Tools and Applications, 78(12):15861–15885. [CrossRef] [Google Scholar]
  35. Larsson, F. and Felsberg, M. (2011). Using fourier descriptors and spatial models for traffic sign recognition. In Image Analysis, pages 238–249. Springer. [CrossRef] [Google Scholar]
  36. Larsson, F., Felsberg, M., and Forssen P.-E. (2011). Correlating fourier descriptors of local patches for road sign recognition. IET Computer Vision, 5(4):244–254. [CrossRef] [Google Scholar]
  37. Lee, H. S. and Kim, K. (2018). Simultaneous traffic sign detection and boundary estimation using convolutional neural network. IEEE Transactions on Intelligent Transportation Systems, 19(5):1652–1663. [CrossRef] [Google Scholar]
  38. Liang, M., Yuan, M., Hu, X., Li, J., and Liu, H. (2013). Traffic sign detection by roi extraction and histogram features-based recognition. In Neural Networks (IJCNN), The 2013 International Joint Conference on, pages 1–8. IEEE. [Google Scholar]
  39. Lillo-Castellano, J., Mora-Jime´nez, I., Figuera-Pozuelo, C., and Rojo-A´lvarez, J. (2015). Traffic sign segmentation and classification using statistical learning methods. Neurocomputing, 153:286–299. [CrossRef] [Google Scholar]
  40. Liu, C., Chang, F., and Chen, Z. (2014). Rapid multiclass traffic sign detection in high-resolution images. IEEE Transactions on Intelligent Transportation Systems, 15(6):2394–2403. [CrossRef] [Google Scholar]
  41. Liu, H., Liu, D., and Xin, J. (2002). Real-time recognition of road traffic sign in motion image based on genetic algorithm. In Machine Learning and Cybernetics, 2002. Proceedings. 2002 International Conference on, volume 1, pages 83–86. IEEE. [Google Scholar]
  42. Madani, A. and Yusof, R. (2016). Traffic sign detection based on simple xor and discriminative features. Jurnal Teknologi, 78(6-2). [CrossRef] [Google Scholar]
  43. Maldonado-Bascon, S., Lafuente-Arroyo, S., Gil-Jimenez, P., Gomez-Moreno, H., and Lopez-Ferreras, F. (2007). Road-sign detection and recognition based on support vector machines. Intelligent Transportation Systems, IEEE Transactions on, 8(2):264–278. [CrossRef] [Google Scholar]
  44. Mathias, M., Timofte, R., Benenson, R., and Van Gool, L. (2013). Traffic sign recognition—how far are we from the solution? In Neural Networks (IJCNN), The 2013 International Joint Conference on, pages 1–8. IEEE. [Google Scholar]
  45. Meuter, M., Nunn, C., Go¨rmer S. M., Mu¨ller-Schneiders S., and Kummert, A. (2011). A decision fusion and reasoning module for a traffic sign recognition system. Intelligent Transportation Systems, IEEE Transactions on, 12(4):1126–1134. [CrossRef] [Google Scholar]
  46. Mogelmose, A., Trivedi, M. M., and Moeslund, T. B. (2012). Vision-based traffic sign detection and analysis for intelligent driver assistance systems: Perspectives and survey. Intelligent Transportation Systems, IEEE Transactions on, 13(4):1484–1497. [CrossRef] [Google Scholar]
  47. Moutarde, F., Bargeton, A., Herbin, A., and Chanussot, L. (2007). Robust on-vehicle real-time visual detection of american and european speed limit signs, with a modular traffic signs recognition system. In Intelligent Vehicles Symposium, 2007 IEEE, pages 1122–1126. IEEE. [CrossRef] [Google Scholar]
  48. Overett, G. and Petersson, L. (2011). Large scale sign detection using hog feature variants. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 326–331. IEEE. [CrossRef] [Google Scholar]
  49. Overett, G., Petersson, L., Andersson, L., and Pettersson, N. (2009). Boosting a heterogeneous pool of fast hog features for pedestrian and sign detection. In Intelligent Vehicles Symposium, 2009 IEEE, pages 584–590. IEEE. [CrossRef] [Google Scholar]
  50. Pazhoumand-dar, H. and Yaghoobi, M. (2013). A new approach in road sign recognition based on fast fractal coding. Neural Computing and Applications, 22(34):615–625. [CrossRef] [Google Scholar]
  51. Ruta, A., Li, Y., and Liu, X. (2008). Detection, tracking and recognition of traffic signs from video input. In Intelligent Transportation Systems, 2008. ITSC 2008. 11th International IEEE Conference on, pages 55–60. IEEE. [Google Scholar]
  52. Ruta, A., Li, Y., and Liu, X. (2010). Real-time traffic sign recognition from video by class-specific discriminative features. Pattern Recognition, 43(1):416–430. [CrossRef] [Google Scholar]
  53. Ruta, A., Porikli, F., Watanabe, S., and Li, Y. (2011). Invehicle camera traffic sign detection and recognition. Machine Vision and Applications, 22(2):359–375. [CrossRef] [Google Scholar]
  54. Shan, H. and Zhu, W. (2019). A small traffic sign detection algorithm based on modified ssd. In IOP Conference Series: Materials Science and Engineering, volume 646, page 012006. IOP Publishing. [Google Scholar]
  55. Shustanov, A. and Yakimov, P. (2017). Cnn design for realtime traffic sign recognition. Procedia engineering, 201:718–725. [CrossRef] [Google Scholar]
  56. Souani, C., Faiedh, H., and Besbes, K. (2014). Efficient algorithm for automatic road sign recognition and its hardware implementation. Journal of real-time image processing, 9(1):79–93. [CrossRef] [Google Scholar]
  57. Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. (2011). The german traffic sign recognition benchmark: a multi-class classification competition. In Neural Networks (IJCNN), The 2011 International Joint Conference on, pages 1453–1460. IEEE. [Google Scholar]
  58. Stallkamp, J., Schlipsing, M., Salmen, J., and Igel, C. (2012). Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Neural networks, 32:323–332. [CrossRef] [Google Scholar]
  59. Timofte, R. and Van Gool, L. (2011). Multi-view manhole detection, recognition, and 3d localisation. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on, pages 188–195. IEEE. [Google Scholar]
  60. Timofte, R., Zimmermann, K., and Van Gool, L. (2014). Multi-view traffic sign detection, recognition, and 3d localisation. Machine Vision and Applications, 25(3):633–647. [CrossRef] [Google Scholar]
  61. Wang, G., Ren, G., Jiang, L., and Quan, T. (2014). Holebased traffic sign detection method for traffic signs with red rim. The Visual Computer, 30(5):539–551. [CrossRef] [Google Scholar]
  62. Wang, X., Hua, X., Xiao, F., Li, Y., Hu, X., and Sun, P. (2018). Multi-object detection in traffic scenes based on improved ssd. Electronics, 7(11):302. [CrossRef] [Google Scholar]
  63. Yang, X., Qu, Y., and Fang, S. (2012). Color fused multiple features for traffic sign recognition. In Proceedings of the 4th International Conference on Internet Multimedia Computing and Service, pages 84–87. ACM. [Google Scholar]
  64. Yuan, Y., Xiong, Z., and Wang, Q. (2019). Vssa-net: vertical spatial sequence attention network for traffic sign detection. IEEE transactions on image processing, 28(7):3423–3434. [CrossRef] [Google Scholar]
  65. Zaklouta, F. and Stanciulescu, B. (2014). Real-time traffic sign recognition in three stages. Robotics and autonomous systems, 62(1):16–24. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.