Open Access
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
Article Number 01008
Number of page(s) 8
Published online 25 January 2021
  1. C. N. Long and T. P. Ackerman, ‘Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects’, Journal of Geophysical Research: Atmospheres, vol. 105, no. D12, pp. 15609–15626, (2000). [CrossRef] [Google Scholar]
  2. C. A. Gueymard, J. M. Bright, D. Lingfors, A. Habte, and M. Sengupta, ‘A posteriori clear-sky identification methods in solar irradiance time series: Review and preliminary validation using sky imagers’, Renewable and Sustainable Energy Reviews, vol. 109, pp. 412–427, (2019). [CrossRef] [Google Scholar]
  3. B. H. Ellis, M. Deceglie, and A. Jain, ‘Automatic Detection of Clear-sky Periods Using Ground and Satellite Based Solar Resource Data’, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, WCPEC 2018 A Joint Conference of 45th IEEE PVSC, 28th PVSEC and 34th EU PVSEC, pp. 2293–2298, (2018). [Google Scholar]
  4. S. Quesada-Ruiz, A. Linares-Rodríguez, J. A. Ruiz-Arias, D. Pozo-Vázquez, and J. Tovar-Pescador, ‘An advanced ANN-based method to estimate hourly solar radiation from multi-spectral MSG imagery’, Solar Energy, vol. 115, pp. 494–504, (2015). [CrossRef] [Google Scholar]
  5. M. J. Reno and C. W. Hansen, ‘Identification of periods of clear sky irradiance in time series of GHI measurements’, Renewable Energy, vol. 90, pp. 520–531, (2016). [CrossRef] [Google Scholar]
  6. W. Zhang, W. Kleiber, A. R. Florita, B.-M. Hodge, and B. Mather, ‘A stochastic downscaling approach for generating high-frequency solar irradiance scenarios’, Solar Energy, vol. 176, pp. 370–379, (2018). [CrossRef] [Google Scholar]
  7. M. Alia-Martinez, J. Antonanzas, R. Urraca, F. J. Martinez-De-Pison, and F. Antonanzas-Torres, ‘Benchmark of algorithms for solar clear-sky detection’, Journal of Renewable and Sustainable Energy, vol. 8, no. 3, (2016). [CrossRef] [Google Scholar]
  8. J. Polo, L. Zarzalejo, L. Martin, A. Navarro, and R. Marchante, ‘Estimation of daily Linke turbidity factor by using global irradiance measurements at solar noon’, Solar Energy, vol. 83, no. 8, pp. 1177–1185, (2009). [CrossRef] [Google Scholar]
  9. R. Perez, P. Ineichen, R. Seals, J. Michalsky, and R. Stewart, ‘Modeling daylight availability and irradiance components from direct and global irradiance’, Solar Energy, vol. 44, no. 5, pp. 271–289, (1990). [CrossRef] [Google Scholar]
  10. F. J. Batlles, F. J. Olmo, J. Tovar, and L. Alados-Arboledas, ‘Comparison of Cloudless Sky Parameterizations of Solar Irradianceat Various Spanish Midlatitude Locations’, Theor Appl Climatol, vol. 66, no. 1–2, pp. 81–93, (2000). [CrossRef] [Google Scholar]
  11. P. Ineichen, ‘Comparison of eight clear sky broadband models against 16 independent data banks’, Solar Energy, vol. 80, no. 4, pp. 468–478, (2006). [CrossRef] [Google Scholar]
  12. Y. Xie and Y. Liu, ‘A new approach for simultaneously retrieving cloud albedo and cloud fraction from surface-based shortwave radiation measurements’, Environ. Res. Lett., vol. 8, no. 4, p. 044023, (2013). [Google Scholar]
  13. R. H. Inman, J. G. Edson, and C. F. M. Coimbra, ‘Impact of local broadband turbidity estimation on forecasting of clear sky direct normal irradiance’, Solar Energy, vol. 117, pp. 125–138, (2015). [CrossRef] [Google Scholar]
  14. M. Lefèvre et al., ‘McClear: a new model estimating downwelling solar radiation at ground level in clear-sky conditions’, (2013). Atmospheric Measurement Techniques, vol. 6, p. 2403-2418. [CrossRef] [Google Scholar]
  15. R. D. García, E. Cuevas, R. Ramos, V. E. Cachorro, A. Redondas, and J. A. MorenoRuiz, ‘Description of the Baseline Surface Radiation Network (BSRN) station at the Izaña Observatory (2009–2017): measurements and quality control/assurance procedures’, Geosci. Instrum. Method. Data Syst., vol. 8, no. 1, pp. 77–96, (2019). [CrossRef] [Google Scholar]
  16. P. Ineichen, ‘Validation of models that estimate the clear sky global and beam solar irradiance’, Solar Energy, vol. 132, pp. 332–344, (2016). [CrossRef] [Google Scholar]
  17. P. Ineichen and R. Perez, ‘A new airmass independent formulation for the Linke turbidity coefficient’, Solar Energy, vol. 73, no. 3, pp. 151–157, 2002. [CrossRef] [Google Scholar]
  18. CMP21, ‘CMP21 spectrally flat Class A pyranometer Kipp & Zonen’. (accessed Sep. 22, 2020). [Google Scholar]
  19. ISO 9060, ‘ISO 9060:2018(en), Solar energy — Specification and classification of instruments for measuring hemispherical solar and direct solar radiation’, 2018. (accessed Sep. 22, 2020). [Google Scholar]
  20. F. Antonanzas-Torres, R. Urraca, J. Polo, O. Perpiñán-Lamigueiro, and R. Escobar, ‘Clear sky solar irradiance models: A review of seventy models’, Renewable and Sustainable Energy Reviews, vol. 107, pp. 374–387, ( 2019). [CrossRef] [Google Scholar]
  21. J. A. Ruiz-Arias and C. A. Gueymard, ‘Worldwide inter-comparison of clear-sky solar radiation models: Consensus-based review of direct and global irradiance components simulated at the earth surface’, Solar Energy, vol. 168, pp. 10–29, (2018). [CrossRef] [Google Scholar]
  22. F. Kasten, ‘A simple parameterization of the pyrheliometric formula for determining the Linke turbidity factor’, (1980). [Google Scholar]
  23. F. Kasten and A. T. Young, ‘Revised optical air mass tables and approximation formula’, Applied optics, vol. 28, no. 22, pp. 4735–4738, (1989). [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  24. O. E. Alani, A. Ghennioui, A. A. Merrouni, H. Ghennioui, Y.-M. Saint-Drenan, and P. Blanc, ‘Validation of surface solar irradiances estimates and forecast under clear-sky conditions from the CAMS McClear model in Benguerir, Morocco’, (2019), vol. 2126, no. 1, p. 190005. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.