Open Access
Issue
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
Article Number 01020
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202122901020
Published online 25 January 2021
  1. L. Dai, Singular Control Systems, Berlin, Germany: Springer (1989). https://doi.org/10.1007/BFb0002476 [CrossRef] [Google Scholar]
  2. Y.-J. Park, S.-K. S. Fan, C.-Y. Hsu, A Review on Fault Detection and Process Diagnostics in Industrial Processes. Processes, 8(9), 1123 (2020). https://doi.org/10.3390/pr8091123 [CrossRef] [Google Scholar]
  3. L. Ming, J. Zhao, Review on chemical process fault detection and diagnosis, 6th International Symposium on Advanced Control of Industrial Processes (AdCONIP) (2017). https://doi.org/10.1109/adconip.2017.7983824 [Google Scholar]
  4. R. Isermann, Fault-Diagnosis Applications, ModelBased Condition Monitoring: Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems, Springer-Verlag Berlin Heidelberg (2011). https://doi.org/10.1007/978-3-642-12767-0_2 [Google Scholar]
  5. A. Kumar, P. Daoutidis, Control of nonlinear differential algebraic equation systems, Chapman and Hall CRC (1998). [Google Scholar]
  6. G.-R. Duan, Analysis and Design of Descriptor Linear Systems, New York, NY: Springer (2010). [CrossRef] [Google Scholar]
  7. R. Isermann, Fault-Diagnosis Systems: an Introduction from Fault Detection to Fault Tolerance, 1, Springer Science and Business Media (2006). https://doi.org/10.1007/3-540-30368-5 [Google Scholar]
  8. Z. Lendek, T. M. Guerra, R. Babuška and B. De Schutter, Stability Analysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models, Studies in Fuzziness and Soft Computing, Springer-Verlag Berlin Heidelberg (2011). https://doi.org/10.1007/978-3-642-16776-8 [CrossRef] [Google Scholar]
  9. D. Miljkovic, Fault detection methods: a literature survey, in: Proceedings of the 34th International Convention MIPRO, pp. 750–755 (2011). [Google Scholar]
  10. M. Witczak, Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems, Analytical and Soft Computing Approaches, Springer International Publishing Switzerland (2014). https://doi.org/10.1007/978-3-319-03014-2 [Google Scholar]
  11. M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, Diagnosis and Fault-Tolerant Control. Springer-Verlag Berlin Heidelberg (2016). https://doi.org/10.1007/978-3-662-47943-8 [CrossRef] [Google Scholar]
  12. L. Li, Fault Detection and Fault-Tolerant Control for Nonlinear Systems. Springer Fachmedien Wiesbaden (2016). https://doi.org/10.1007/978-3-658-13020-6 [Google Scholar]
  13. V. Venkatasubramanian, R. Rengaswamy, K. Yin, S.N. Kavuri, A review of process fault detection and diagnosis part i: quantitative model-based methods, Comput. Chem. Eng. 27 (3) 293–311 (2003). https://doi.org/10.1016/S0098-1354(02)00160-6 [CrossRef] [Google Scholar]
  14. V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, A review of process fault detection and diagnosis part ii : qualitative models and search strategies, Comput. Chem. Eng. 27 (3) 313–326 (2003). https://doi.org/10.1016/S0098-1354(02)00161-8 [CrossRef] [Google Scholar]
  15. V. Venkatasubramanian, R. Rengaswamy, S.N. Kavuri, K. Yin, A review of process fault detection and diagnosis part iii: process history based methods, Comput. Chem. Eng. 27 (3) 327–346 (2003). https://doi.org/10.1016/s0098-1354(02)00162-x [CrossRef] [Google Scholar]
  16. Z. Gao, C. Cecati, S.X. Ding, A survey of fault diagnosis and fault-tolerant techniques-part I: fault diagnosis with model-based and signal-based approaches, IEEE Trans. Ind. Electron. 62 (6) 3757–3767 (2015). https://doi.org/10.1109/TIE.2015.2417501 [CrossRef] [Google Scholar]
  17. I. Hwang, S. Kim, Y. Kim, C.E. Seah, A Survey of Fault Detection, Isolation, and Reconfiguration Methods, IEEE Transactions on Control Systems Technology, 18(3), 636–653 (2010). https://doi.org/10.1109/tcst.2009.2026285 [CrossRef] [Google Scholar]
  18. Z. Gao, C. Cecati, S.X. Ding, A survey of fault diagnosis and fault-tolerant techniques-part II: fault diagnosis with knowledge-based and hybrid/active approaches, IEEE Trans. Ind. Electron. 62 (6) 3768–3774 (2015). https://doi.org/10.1109/TIE.2015.2419013 [Google Scholar]
  19. J. Chen, R.J. Patton, Diagnosis of Non-Linear Dynamic Systems, The International Series on Asian Studies in Computer and Information Science, Vol 3. Springer, Boston, MA (1999). https://doi.org/10.1007/978-1-4615-5149-2_9 [Google Scholar]
  20. J. Qiu, M. Ren, Y. Niu, Y. Zhao, Y. Guo, Fault Estimation for Nonlinear Dynamic Systems, Circuits, Systems, and Signal Processing, 31(2), 555–564 (2011). https://doi.org/10.1007/s00034-011-9348-z [CrossRef] [Google Scholar]
  21. H. Hamdi, M. Rodrigues, C. Mechmeche, N.B. Braiek, Robust fault detection and estimation for descriptor systems based on multi-models concept, International Journal of Control, Automation and Systems, 10(6), 1260–1266 (2012). https://doi.org/10.1007/s12555-012-0622-z [CrossRef] [Google Scholar]
  22. Y. Yang, S.X. Ding, L. Li, On observerbased fault detection for nonlinear systems, Systems and Control Letters, 82, 18–25 (2015). https://doi.org/10.1016/j.sysconle.2015.05.004 [CrossRef] [Google Scholar]
  23. T. Youssef, M. Chadli, H.R. Karimi, R. Wang, Actuator and sensor faults estimation based on proportional integral observer for TS fuzzy model, J. Frankl. Inst. 354 (6) 2524–2542 (2017). https://doi.org/10.1016/j.jfranklin.2016.09.020 [CrossRef] [Google Scholar]
  24. K. Ouarid, A. El Assoudi, J. Soulami, E. El Yaagoubi, Fault Estimation Based on the Observer Design for Discrete-time Takagi-Sugeno Descriptor Models, 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS) (2019). https://doi.org/10.1109/icds47004.2019.8942301 [Google Scholar]
  25. H. Han, Y. Yang, L. Li, S.X. Ding, Observerbased fault detection for uncertain nonlinear systems, J. Frankl. Inst. 355 (3) 1278–1295 (2018). https://doi.org/10.1016/j.jfranklin.2017.12.021 [CrossRef] [Google Scholar]
  26. M.F. Pico, E.J. Adam, Fault diagnosis and tolerant control using observer banks applied to continuous stirred tank reactor, Adv. Sci. Technol. Eng. Syst. J. 2 (3) 171–181 (2017). https://doi.org/10.25046/aj020322 [CrossRef] [Google Scholar]
  27. K. Ouarid, A. El Assoudi, J. Soulami, E. El Yaagoubi, Observer Design for Simultaneous State and Fault Estimation for a Class of Continuoustime Implicit Linear Models, IEEE The International Conference of Computer Science and Renewable Energies, 978-1-7281-0826-1/19 (2019). https://doi.org/10.1109/ICCSRE.2019.8807633 [Google Scholar]
  28. M. A. Eissa, A. Sali, M. k. Hassan, A.M. Bassiuny, R. R. Darwish, Observer-Based Fault Detection With Fuzzy Variable Gains and Its Application to Industrial Servo System, IEEE Access (2020). https://doi.org/10.1109/ACCESS.2020.3010125 [Google Scholar]
  29. K. Ouarid, A. El Assoudi, J. Soulami, E. El Yaagoubi, Design of Fuzzy Observer for a Class of Takagi-Sugeno Descriptor Models to Simultaneously Estimate States and Faults, Journal of Advanced Research in Dynamical and Control Systems (2020). https://doi.org/10.5373/JARDCS/V12SP5/20201754 [Google Scholar]
  30. M. Darouach, M. Boutayeb, Design of observers for descriptor systems, IEEE Transactions on Automatic Control, Vol. 40, pp. 1323-1327 (1995). https://doi.org/10.1109/9.400467 [CrossRef] [Google Scholar]
  31. D. Koenig, Unknown Input Proportional MultipleIntegral Observer Design for Linear Descriptor Systems: Application to State and Fault Estimation, IEEE Transactions on Automatic Control, Vol. 50, No. 2 (2005). https://doi.org/10.1109/TAC.2004.841889 [CrossRef] [Google Scholar]
  32. Z. Gao, S. X. Ding, Y. Ma, Robust fault estimation approach and its application in vehicle lateral dynamic systems, Optimal Control Applications and Methods, Vol. 28, no. 3, pp. 143–156 (2007). https://doi.org/10.1002/oca.786 [CrossRef] [Google Scholar]
  33. Z. Wang, Y. Shen, X. Zhang, Q. Wang. Observer design for discrete-time descriptor systems : An LMI approach, Systems and Control Letters, 61(6) :683-687 (2012). https://doi.org/10.1016/j.sysconle.2012.03.006 [CrossRef] [Google Scholar]
  34. M. Darouach, On the functional observers for linear descriptor systems, Syst. Control Lett., Vol. 61, no. 3, pp. 427-434 (2012). https://doi.org/10.1016/j.sysconle.2012.01.006 [CrossRef] [Google Scholar]
  35. Q. Jia, H. Li, Y. Zhang, X. Chen Robust Observer-based Sensor Fault Reconstruction for Discrete-Time Systems via a Descriptor System Approach, International Journal of Control, Automation and Systems 13(2):1-10 (2015). https://doi.org/10.1007/s12555-014-0098-0 [CrossRef] [Google Scholar]
  36. G.-L. Osorio-Gordillo, M. Darouach, C.-M. Astorga-Zaragoza, L. Boutat-Baddas, Fault diagnosis for discrete-time descriptor linear systems, International Federation of Automatic Control, Vol. 48, no. 21, 1238–1243 (2015). https://doi.org/10.1016/j.ifacol.2015.09.695 [Google Scholar]
  37. Z. Wang, M. Rodrigues, D. Theilliol, Y. Shen, Fault estimation Filter design for discrete-time descriptor systems, IET Control Theory and Applications, Institution of Engineering and Technology, 9(10), pp.15871594 (2015). https://doi.org/10.1049/iet-cta.2014.0641 [CrossRef] [Google Scholar]
  38. Z. Gao, Fault estimation and fault tolerant control for discrete-time dynamic systems, IEEE Transactions on Industrial Electronics, 62(6), 3874-3884 (2015). https://doi.org/10.1109/TIE.2015.2392720 [Google Scholar]
  39. I. Haj Brahim, M. Chaabane, G. Hashim and D. Mehdi, Sensor Fault and State Estimation for Continuous-Time Descriptor Linear Systems: an LMI Approach. Proceedings of the 2016 5th International Conference on Systems and Control, Cadi Ayyad University, Marrakech, Morocco, May 25-27 (2016). https://doi.org/10.1109/ICoSC.2016.7507057 [Google Scholar]
  40. J. Zhang, F. Zhu, J. Li, X. Li, Discrete-time linear descriptor system unknown input observer design: an auxiliary output-based approach, International Journal of Control, Automation and Systems, 15(6), 2599–2607 (2017). https://doi.org/10.1007/s12555-016-0611-8 [CrossRef] [Google Scholar]
  41. S. Boyd, L. E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, Philadelphia, PA: SIAM (1994). https://doi.org/10.1137/1.9781611970777 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.