Open Access
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
Article Number 01023
Number of page(s) 7
Published online 25 January 2021
  1. R. A. Rebouças, Q. d. C. Eller, M. Habermann and E. H. Shiguemori, “Embedded System for Visual Odometry and Localization of Moving Objects in Images Acquired by Unmanned Aerial Vehicles, ” 2013 III Brazilian Symposium on Computing Systems Engineering, Niteroi, 2013, pp. 35-40 [Google Scholar]
  2. Huang B.; Liu J.; Sun W.; Yang, F. A Robust Indoor Positioning Method based on Bluetooth Low Energy with Separate Channel Information. Sensors 2019, 19, 34-87. [CrossRef] [Google Scholar]
  3. Jingbin Liu, Ruizhi Chen, Yuwei Chen, Ling Pei, and Liang Chen. iparking: An intelligent indoor location-based smartphone parking service. Sensors, 2012. [Google Scholar]
  4. Jingbin Liu, Ruizhi Chen, Ling Pei, Robert Guinness, and Heidi, Kuusniemi: A hybrid smartphone indoor positioning solution for mobile lbs. Sensors, 2012. [Google Scholar]
  5. Abby Yao, Teaching Robots Presence: What You Need to Know About SLAM,, 2017. [Google Scholar]
  6. Rebecca Maxwell, Robotic Mapping: Simultaneous Localization and Mapping (SLAM),, 2013. [Google Scholar]
  7. Mohamed Abouzahir, Abdelhafid Elouardi, Rachid Latif, Samir Bouaziz, and Abdelouahed Tajer. Embedding slam algorithms: Has it come of age? Robotics and Autonomous Systems, 2017. [PubMed] [Google Scholar]
  8. Ma, L., Falquez, J. M., McGuire, S., Sibley, G., 2016. Large scale dense visualinertial slam. In: Field and Service Robotics. Springer, pp. 141–155. [CrossRef] [Google Scholar]
  9. Dai-Duong Nguyen. A vision system based realtime SLAM applications. Hardware Architecture [cs.AR]. Université Paris-Saclay, 2018. English. NNT: 2018SACLS518ff. tel02398765. [Google Scholar]
  10. Nguyen, D.-D., El Ouardi, A., Rodriguez, S., Bouaziz S.: FPGA implementation of HOOFR bucketing extractor based real time embedded SLAM applications. Journal of Real-Time Image Processing, 2020, [PubMed] [Google Scholar]
  11. Smith. R, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in robotics, Autonomous Robot Vehicles, pages 167–193. Springer Verlag, 1990. [Google Scholar]
  12. Montemerlo, M., Thrun, S., Koller, D., Wegbreit B.: FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem. In: AAAI National Conference on Artificial Intelligence, Edmonton, Canada (2002). [Google Scholar]
  13. M. Abouzahir, A. Elouardi, S. Bouaziz, R. Latif, A. Tajer. Large Scale Monocular FastSLAM2.0 Acceleration on an Embedded Heterogeneous Architecture EURASIP Journal on Advances in Signal Processing, SpringerOpen, Juillet 2016. [Google Scholar]
  14. Mohamed Abouzahir, Rachid Latif, Abdelouahed Tajer, Abdelhafid Elouardi, Samir Bouaziz, “Localization and Mapping algorithms implemented on a low-power embedded architecture: A case study”, 5th International Conference on Multimedia Computing and Systems (ICMCS) Marrakech, 2016 IEEE Xplore digital library. [Google Scholar]
  15. Mur-Artal, R., Montiel, J., Tardos, J. D., 2015. Orbslam: a versatile and accurate monocular slam system. Robotics, IEEE Transactions on 31 (5), 1147–1163. R. Nicole, “Title of paper with only first word capitalized, ” J. Name Stand. Abbrev., in press. [Google Scholar]
  16. R. Latif and A. Saddik, “SLAM algorithms implementation in a UAV, based on a heterogeneous system: A survey, ” 2019 4th World Conference on Complex Systems (WCCS), Ouarzazate, Morocco, 2019, pp. 1-6, doi: 10.1109/ICoCS.2019.8930783. [Google Scholar]
  17. S. Aldegheri, N. Bombieri, D. Daniele Bloisi and A. Farinelli, “Data Flow ORB-SLAM for Realtime Performance on Embedded GPU Boards”, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 16, doi: 10.1109/IROS40897.2019.8967814. [Google Scholar]
  18. Michael J Milford, Gordon F Wyeth et DF Rasser : Ratslam : a hippocampal model for simultaneous localization and mapping. In Robotics and Automation, 2004.Proceedings.ICRA’04. 2004 IEEE International Conference on, volume 1, pages 403–408. IEEE, 2004. [CrossRef] [Google Scholar]
  19. Michael J Milford and Gordon F Wyeth: Mapping a suburb with a single camera using a biologically inspired slam system. IEEE Transactions on Robotics, 24(5):1038–1053, 2008. [CrossRef] [Google Scholar]
  20. Arren J Glover, William P Maddern, Michael J Milford et Gordon F Wyeth: Fabmapratslam : Appearance-based slam for multiple times of day. In Robotics and Automation (ICRA), 2010 IEEE International Conference on, pages 3507–3512. IEEE, 2010. [CrossRef] [Google Scholar]
  21. Milford, Michael, Wyeth, Gordon, and Prasser, David (2004) RatSLAM: a hippocampal model for simultaneous localization and mapping. In Valavanis, K (Ed.) Proceedings of the 2004 IEEE International Conference on Robotics and Automation. IEEE, United States of America, pp. 403-408. [CrossRef] [Google Scholar]
  22. Dragonfly, How can visual SLAM be used and what are the applications?, [Google Scholar]
  23. D. Scaradozzil, S. Zingaretti, A. Ferrari, Simultaneous localization and mapping (SLAM) robotics techniques: a possible application in surgery,, 2018. [Google Scholar]
  24. Mike Smith, Ian Baldwin, Winston Churchill, Rohan Paul, and Paul Newman. The new college vision and laser data set. The International Journal of Robotics Research, 28(5):595–599, 2009. [CrossRef] [Google Scholar]
  25. David Ball, Scott Heath, Janet Wiles, Gordon Wyeth, Peter Corke, Michael Milford: OpenRatSLAM: an open source brain based SLAM system, Autonomous Robots, 2013. [Google Scholar]
  26. David Ball. Open RatSLAM from Internet: [Google Scholar]
  27. A. Ouadrhiri, Implémentation d’un SLAM Monoculaire pour un robot d’intérieure,, 2018. [Google Scholar]
  28. Nickolls, J., Dally W.: The gpu computing era. Micro IEEE 30(2), 56–69 (2010) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.