Open Access
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
Article Number 01049
Number of page(s) 11
Published online 25 January 2021
  1. Y. Zhao, L.Y. Wangb, G. GeorgeYin & J.F. Zhang. “Identification ofWiener systems with binary-valued output observations”, Automatica 43, 1752-176, (2007). [CrossRef] [Google Scholar]
  2. E. Colinet, J. Juillard: “A Weighted Least-Squares Approach to Parameter Estimation Problems Based on Binary Measurements”, “IEEE Transactions on Automatic Control 55, 1, 148-152 (2010). [CrossRef] [Google Scholar]
  3. K. Jafaridinani, J. Juillard & M. Roger. “Convergence Analysis of an online Approach to Parameter Estimation Problems Based on Binary Observations”, Automatica, International Federation of Automatic Control, 48 (11), pp.2837-2842, (2012). [Google Scholar]
  4. J. Guo and Y. Zhao: “Recursive projection algorithm on FIR system identification with binary-valued observations”, Automatica 49, 3396-3401, (2013). [CrossRef] [Google Scholar]
  5. J. Guo, Y. Zhao, C.Y. Sun & Y. Yu: “Recursive identification of FIR systems with binaryvalued outputs and communication channels”, Automatica 60, 165-172, (2015). [CrossRef] [Google Scholar]
  6. A. Goudjil, M. Pouliquen, E. Pigeon, O. Gehan & M. M’Saad: “Identification of systems using binary sensors via support vector machines”, IEEE Conference on Decision and Control, Osaka, (2015). [Google Scholar]
  7. M. Pouliquen, T. Menard, E. Pigeon, O. Gehan and A. Goudjil. “Recursive System Identification Algorithm using Binary Measurements”, European Control Conference, Aalborg, (2016). [Google Scholar]
  8. J. Guo, L. Y. Wang, G. Yin, Y. Zhao & Ji-Feng Zhang: “Identification of Wiener systems with quantized inputs and binary-valued output observations”, Automatica 78, 280-286, (2017). [CrossRef] [Google Scholar]
  9. L.Y. Wanga, G.G. Yin and J.F. Zhang. “Joint identification of plant rational models and noise distribution functions using binary-valued observations”, Automatica 42, 535-547, (2006). [CrossRef] [Google Scholar]
  10. X. Liu, J. Wang and Q. Zhang. “A quadratic programming-based method for quantized system identification”, Proceedings of the 18th World Congress The International Federation of Automatic Control Milano (Italy) August 28 September 2, (2011). [Google Scholar]
  11. Qijiang Song. “Recursive identification of systems with binary-valued outputs and with ARMA noises”, Automatica 93, 106-113, (2018). [CrossRef] [Google Scholar]
  12. D. Marelli, K. You and M. Fu. ” Identification of ARMA models using intermittent and quantized output observations”, International Conference on Acoustics, Speech and Signal Processing, (2011). [Google Scholar]
  13. D. Marelli, K. You, M. Fu. “Identification of ARMA models using intermittent and quantized output observations”, Automatica 49, 360-369, (2013). [CrossRef] [Google Scholar]
  14. G. Li and C. Wen. “Identification of Wiener Systems With Clipped Observations”, IEEE Transactions on Signal Processing, Vol. 60, NO. 7, JULY (2012). [Google Scholar]
  15. M. Pouliquen and E. Pigeon and O. Gehan and A. Goudjil. “Identification using Binary Measurements for IIR Systems”, IEEE Transactions on Automatic Control, 55, 148–152 (2019). [Google Scholar]
  16. L. Bourgois, J. Juillard. “Convergence Analysis of an Online Approach to Parameter Estimation Problems Based on Binary Noisy Observations”. CDC’12, Maui, Hawai, United States. pp.1506-1511, (2012). [Google Scholar]
  17. M. Casini, A. Garulli & A. Vicino: “Set-membership identification of ARX models with quantized measurements”, 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) Orlando, FL, USA, December 12-15, (2011). [Google Scholar]
  18. K. Jafari, J. Juillard and E. Colinet: “A Recursive System Identification Method Based on Binary Measurements”, 49th IEEE Conference on Decision and Control December 15-17, 2010, Hilton Atlanta Hotel, Atlanta, GA, USA, (2010). [Google Scholar]
  19. L.Y. Wang, J.F. Zhang and G. Yin. “System Identification Using Binary Sensors”, IEEE Transactions on Automatic Control, Vol. 48, NO. 11, NOVEMBER (2003). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.