Open Access
Issue
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
Article Number 01057
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202122901057
Published online 25 January 2021
  1. D. Dasgupta, Z. Akhtar, S. Sen, The Journal of Defense Modeling and Simulation 0, 1548512920951275 (0), https://doi.org/10.1177/1548512920951275 [Google Scholar]
  2. R. Caruana, Machine Learning 28, 41 (1997) [CrossRef] [Google Scholar]
  3. N. Sadawi, I. Olier, J. Vanschoren, J.N. van Rijn, J. Besnard, R. Bickerton, C. Grosan, L. Soldatova, R.D. King, Journal of Cheminformatics 11, 68 (2019) [CrossRef] [PubMed] [Google Scholar]
  4. S.J. Pan, Q. Yang, IEEE Trans. on Knowl. and Data Eng. 22, 1345 (2010) [CrossRef] [Google Scholar]
  5. J. Zhou, J. Chen, J. Ye, Multi-task learning: Theory, algorithms, and applications, https://archive.siam.org/meetings/sdm12/zhou_chen_ye.pdf [Google Scholar]
  6. G. Draper-Gil, A.H. Lashkari, M.S.I. Mamun, A.A. Ghorbani, Characterization of Encrypted and VPN Traffic using Time-related Features, in ICISSP (2016) [Google Scholar]
  7. C.I. for Cybersecurity, Intrusion detection evaluation dataset (cic-ids2017), https://www.unb.ca/cic/datasets/ids-2017.html [Google Scholar]
  8. R. Di Pietro, L.V. Mancini, Intrusion Detection Systems, 1st edn. (Springer Publishing Company, Incorporated, 2008), ISBN 0387772650 [Google Scholar]
  9. M.M. Deza, E. Deza, Encyclopedia of Distances (Springer Berlin Heidelberg, 2009) [CrossRef] [Google Scholar]
  10. C. Shui, M. Abbasi, L. Robitaille, B. Wang, C. Gagné, CoRR abs/1903.09109 (2019), 1903.09109 [Google Scholar]
  11. S. Ben-David, R.S. Borbely, Mach. Learn. 73, 273–287 (2008) [CrossRef] [Google Scholar]
  12. J. Baxter, Mach. Learn. 28, 7–39 (1997) [CrossRef] [Google Scholar]
  13. L. Duong, T. Cohn, S. Bird, P. Cook, Low Resource Dependency Parsing: Cross-lingual Parameter Sharing in a Neural Network Parser, in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers) (Association for Computational Linguistics, Beijing, China, 2015), pp. 845–850, https://www.aclweb.org/anthology/P15-2139 [Google Scholar]
  14. Y. Yang, T.M. Hospedales, CoRR abs/1606.04038 (2016), 1606.04038 [Google Scholar]
  15. S. Vandenhende, S. Georgoulis, W.V. Gansbeke, M. Proesmans, D. Dai, L.V. Gool, Multi-task learning for dense prediction tasks: A survey (2020), 2004.13379 [Google Scholar]
  16. S. Rezaei, X. Liu, Multitask Learning for Network Traffic Classification, in 2020 29th International Conference on Computer Communications and Networks (ICCCN) (2020), pp. 1–9 [Google Scholar]
  17. H. Huang, H. Deng, J. Chen, L. Han, W. Wang, International Journal of Emerging Technologies in Learning (iJET) 13, 4 (2018) [CrossRef] [Google Scholar]
  18. S. Rezaei, X. Liu, A Target-Agnostic Attack on Deep Models: Exploiting Security Vulnerabilities of Transfer Learning, in International Conference on Learning Representations (2020), https://openreview.net/forum?id=BylVcTNtDS [Google Scholar]
  19. B. Alothman, International Journal of Intelligent Computing Research (IJICR) 9, 880– (2018) [CrossRef] [Google Scholar]
  20. B. Alothman, H. Janicke, S.Y. Yerima, Class Balanced Similarity-Based Instance Transfer Learning for Botnet Family Classification, in Discovery Science, edited by L. Soldatova, J. Vanschoren, G. Papadopoulos, M. Ceci (Springer International Publishing, Cham, 2018), pp. 99–113, ISBN 978-3-03001771-2 [Google Scholar]
  21. Y. Zhang, Q. Yang, CoRR abs/1707.08114 (2017), 1707.08114 [Google Scholar]
  22. G. Santafe, I.n. Inza, J.A. Lozano, Artif. Intell. Rev. 44, 467 (2015) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.