Open Access
Issue
E3S Web Conf.
Volume 229, 2021
The 3rd International Conference of Computer Science and Renewable Energies (ICCSRE’2020)
Article Number 01058
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202122901058
Published online 25 January 2021
  1. Pradyumna Mogre, Sharanabasava V. Ganachari, Jayachandra S. Yaradoddi, Nagaraj N. Banapurmath, Anand M. Hunashyal, Ashok S. Shettar, Synthesis and characterization studies of polyaniline nano fibres. Advanced Materials Proceedings, 2018, 3(3), 178-180. [CrossRef] [Google Scholar]
  2. N. Gospodinova, L. Terlemezyan, Conducting Polymers Prepared by Oxidative, Polymerization: Polyaniline, Prog. Polym. Sci, Vol. 23, 1443–1484, 1998 [CrossRef] [Google Scholar]
  3. Pradyumna Mogre, Sharanabasava V. Ganachari, Jayachandra S. Yaradoddi, Nagaraj N. Banapurmath, Anand M. Hunashyal, Ashok S. Shettar, Synthesis and characterization studies of polyaniline nano fibres. Advanced Materials Proceedings, 2018, 3(3), 178-180. [CrossRef] [Google Scholar]
  4. Ateh DD, Navsaria HA, Vadgama P. Polypyrrolebased conducting polymers and interactions with biological tissues. J R Soc Interface 2006;3:741–52 [CrossRef] [PubMed] [Google Scholar]
  5. Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 1977:578–80. [Google Scholar]
  6. Zhou DD, Cui XT, Hines A, Greenberg RJ. Conducting polymers in neural stimulation applications. In: Zhou DD, Greenbaum E, editors. Implantable neural prostheses, Vol. 2. Berlin: Springer; 2010. p. 217–52. [Google Scholar]
  7. Lakard B, Ploux L, Anselme K, Lallemand F, Lakard S, Nardin M, et al. Effect of ultrasounds on the electrochemical synthesis of polypyrrole, application to the adhesion and growth of biological cells. Bioelectrochemistry 2009; 75:148–57. [CrossRef] [PubMed] [Google Scholar]
  8. Kotwal A, Schmidt CE. Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 2001;22:1055–64. [CrossRef] [PubMed] [Google Scholar]
  9. Wallace GG, Smyth M, Zhao H. Conducting electroactive polymer-based biosensors. Trends Analyt Chem 1999;18:245–51. [CrossRef] [Google Scholar]
  10. Vivekanandan J, Ponnusamy V, Mahudeswaran A, Vijayanand PS. Synthesis, characterization and conductivity study of polyaniline prepared by chemical oxidative and electrochemical methods. Arch.Appl. Sci. Res. 2011;3(6):147-53. [Google Scholar]
  11. Ninh DH, Thao TT, Long PD, Dinh NN. Characterization of Electrochromic Properties of Polyaniline Thin Films Electropolymerized in H2SO4 Solution. Open J. Org. Polym. Mater. 2016 Jan 7;6(01):30. [CrossRef] [Google Scholar]
  12. Bavane RG. Synthesis and Characterization of thin Films of Conducting Polymers for Gas Sensing Application. SOPS.NMU: Jalgaon;2014 chapter three, Synthesis of polyaniline (PANI); p.2237. [Google Scholar]
  13. H. Tsutumi, S. Yamashita, T. Oishi, “Preparation of polyan i-line -poly (p-styrenesulfonic acid) composite by post -polymerization and application as positive active m a-terial for a rechargeable lithium battery, ” Journal of Applied Electrochemistry, Vol. 27, pp. 477-481, June (1997). [CrossRef] [Google Scholar]
  14. Han MG, Lee YJ, Byun SW and Soon Im S. 2001. Physical properties and thermal transition of polyaniline film. Synthetic Met, 124, pp:337-343. [CrossRef] [Google Scholar]
  15. Ayad M.M and Zaki EA. 2008. Doping of polyaniline films with organic sulfonic acids in aqueous media and the effect of water on these doped films, Eur.Polym. J., 44, pp:3741-3747. [CrossRef] [Google Scholar]
  16. Sniechowski M, Djurado D, Dufour B, Rannou P and Pron A. 2004. Direct analysis of lamellar structure in polyaniline protonated with plasticizing dopants, Synthetic Met, 143, pp:163-169. [CrossRef] [Google Scholar]
  17. Sniechowski M, Djurado D, Dufour B, Rannou P and Pron A. 2004. Direct analysis of lamellar structure in polyaniline protonated with plasticizing dopants, Synthetic Met, 143, pp:163-169. [CrossRef] [Google Scholar]
  18. Ayad M.M and Zaki EA. 2008. Doping of polyaniline films with organic sulfonic acids in aqueous media and the effect of water on these doped films, Eur.Polym. J., 44, pp:3741-3747. [CrossRef] [Google Scholar]
  19. Jiansheng Wua, Yimeng Sunb, Wei Xub, Qichun Zhanga. 2014. Investigating thermoelectric properties of doped polyaniline nanowires, Synthetic Metals, 189, pp:177-182. [CrossRef] [Google Scholar]
  20. Pornputtkul Y, Kane-Maguire L.A.P and Wallace G.G. 2006. Influence of electrochemical polymerization temperature on the optical properties of(+)-camphor sulfonic acid-doped polyaniline, Macromolecules, 39, pp:5604–5610. [CrossRef] [Google Scholar]
  21. Khanna P.K, Singh N, Charan S and Viswanath A.K. 2005. Synthesis of Ag/polyanilinenano composite via aninsituphoto-redox mechanism, Mater. Chem. Phys., 92, pp:214–219. [CrossRef] [Google Scholar]
  22. Hussain A. and Kumar A. 2000. Electrochemical synthesis and characterization of chloride doped polyaniline, Bulletin of Material Science, 26(3), pp:329-334. [CrossRef] [Google Scholar]
  23. Kargirwar, S.R.; Thakare, S.R.; Choudhary, M.D.; Kondawar, S.B.; Dhakate, S.R.; Adv. Mat. Lett. 2011, 2(6), 397. [CrossRef] [Google Scholar]
  24. Kushwah, B.S.; Upadhaya, S.C.; Shukla, S.; Sikarwar, A.S.; Sengar, R.M.S.; Bhadauria, S. Adv. Mat. Lett. 2010, 2(1), 43. [CrossRef] [Google Scholar]
  25. Tiwari, A.; Kumar, R.; Prabhakaran, M.; Pandey, R.R.; Kumari, P.; Chadurvedi, A.; Mishra, A.K. Polymers for Advanced Technologies 2010, 21, 615. [CrossRef] [Google Scholar]
  26. Tiwari, A.; Sen, V.; Dhakate, S.R.; Mishra A.P; Singh, V. Polymers for Advanced Technologies, 2008, 19, 909. [CrossRef] [Google Scholar]
  27. Tiwari, A. Journal of Polymer Research 2008, 15(4), 337. [CrossRef] [Google Scholar]
  28. Tiwari, A. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 2007, 44(7), 735. [CrossRef] [Google Scholar]
  29. Kondawar, S.B.; Thakare, S.R.; Bompilwar, S.; Khati, V. Int. J. Mod. Phys. B, 2009, 23 (15), 3297. [CrossRef] [Google Scholar]
  30. Tiwari, A.; Prabaharan, M.; Pandey, R.; Li, S. Journal of Inorganic and Organometallic Polymers and Materials, 2010, 20(2), 380. [CrossRef] [Google Scholar]
  31. Kondawar, S.B.; Acharya, S.A.; Dhakate, S.R. Adv. Mat. Lett. 2011, 2(5), 362. [CrossRef] [Google Scholar]
  32. Limin L, Enhui L, Yanjing Y, Haijie Sh, Zhengzheng H, Xiaoxia X (2010) Nitrogen containing carbons prepared from polyaniline as anode materials for lithium secondary batteries. Mater Lett 64:2115–2117 [CrossRef] [Google Scholar]
  33. Chen Y, Yang G, Zhang Z, Yang X, Hou W, Zhu J (2010) Polyaniline intercalated layered vanadium oxide nanocomposites onepot hydrothermal synthesis and application in lithium battery. Nanoscale 2:2131–2138 [CrossRef] [PubMed] [Google Scholar]
  34. Tsumura A, Koezuka H, Ando T (1986) Macromolecular elec-tronic device: field effect transistor with a polythiophene thin film. Appl Phys Lett 49:1210–1217 [CrossRef] [Google Scholar]
  35. Tiwari, A.; Sen, V.; Dhakate, S.R.; Mishra A.P; Singh, V. Polymers for Advanced Technologies, 2008, 19, 909. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.