Open Access
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01002
Number of page(s) 9
Published online 18 January 2021
  1. Makogon, Y.F., Holditch, S.A., & Makogon, T.Y. (2007). Natural gas-hydrates – a potential energy source for the 21st century. Journal of Petroleum Science and Engineering, 56(1-3), 14–31. [CrossRef] [Google Scholar]
  2. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group. [CrossRef] [Google Scholar]
  3. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015. London, United Kingdom: CRC Press, Taylor & Francis Group. [CrossRef] [Google Scholar]
  4. Minshull, T.A., Marín-Moreno, H., Betlem, P., & Bialas, J. (2020). Hydrate occurrence in Europe: A review of available evidence. Marine and Petroleum Geology, (111), 735–764. [CrossRef] [Google Scholar]
  5. Bondarenko, V., Sai, K., Prokopenko, K., & Zhuravlov, D. (2018). Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black sea. Mining of Mineral Deposits, 12(2),104–115. [CrossRef] [Google Scholar]
  6. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of thermodynamic conditions for gas hydrates formation from methane in the coal mines. Solid State Phenomena, (291), 155–172. [CrossRef] [Google Scholar]
  7. Bondarenko, V., Svietkina, O., Lysenko, R., & Liu, B. (2020). Methane gas hydrates influence on sudden coal and gas outbursts during underground mining of coal deposits. E3S Web of Conferences, (201), 01002. [CrossRef] [EDP Sciences] [Google Scholar]
  8. Kozhevnykov, A., Khomenko, V., Liu, B., Kamyshatskyi, O., & Pashchenko, O. (2020). The history of gas hydrates studies: From laboratory curiosity to a new fuel alternative. Key Engineering Materials, (844), 49–64. [CrossRef] [Google Scholar]
  9. Bondarenko, V., Sai, K., Ganushevych, K., & Ovchynnikov, M. (2015). The results of gas hydrates process research in porous media. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 123–127. [CrossRef] [Google Scholar]
  10. Fakher, S., Elgahawy, Y., & Abdelaal, H. (2019). A comprehensive review on gas hydrate reservoirs: Formation and dissociation thermodynamics and rock and fluid properties. International Petroleum Technology Conference. [Google Scholar]
  11. Bondarenko, V., Kovalevska, I., Astafiev, D., & Malova, O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, (277), 137–146. [CrossRef] [Google Scholar]
  12. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Colletion - Mining of Mineral Deposits, 203–205. [CrossRef] [Google Scholar]
  13. Tsypkin, G.G. (2005). Effect of decomposition of a gas hydrate on the gas recovery from a reservoir containing hydrate and gas in the free state. Fluid Dynamics, 40(1), 117–125. [CrossRef] [Google Scholar]
  14. Yin, Z., Moridis, G., Tan, H. K., & Linga, P. (2018). Numerical analysis of experimental studies of methane hydrate formation in a sandy porous medium. Applied Energy, (220), 681–704. [CrossRef] [Google Scholar]
  15. Dreus, A.Yu., Bondarenko, V.I., Biletskyi, V.S., & Lysenko, R.S. (2020). Mathematical simulation of heat and mass exchange processes during dissociation of gas hydrates in a porous medium. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5 (179). [Google Scholar]
  16. Musakaev, N.G., & Khasanov, M.K. (2019). On the issue of the solutions existence of the problem of gas hydrate dissociation in a porous medium with the formation of an extended region of phase transitions. Journal of Physics: Conference Series, (1404), 012034. [CrossRef] [Google Scholar]
  17. Kozhevnikov, A.A., Sudakov, A.K., Dreus, A.Yu., & Lysenko, Ye.Ye. (2014). Study of heat transfer in cryogenic gravel filter during its transportation along a drillhole. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 49–54. [Google Scholar]
  18. Klymenko, V., Gutsul, V., Bondarenko, V., Martynenko, V., & Stets, P. (2019). Modeling of the Kinetics of the Gas Hydrates Formation on the Basis of a Stochastic Approach. Solid State Phenomena, (291), 98–109. [CrossRef] [Google Scholar]
  19. Khabibullin, T., Falcone, G., & Teodoriu, C. (2011). Drilling through gas-hydrate sediments: Managing wellbore-stability risks. SPE drilling & completion, 26(02), 287–294. [CrossRef] [Google Scholar]
  20. Bulat, A., Blyuss, B., Dreus, A., Liu, B., & Dziuba, S. (2019). Modelling of deep wells thermal modes. Mining of Mineral Deposits, 13(1), 58–65. [CrossRef] [Google Scholar]
  21. Poveshchenko, Yu.A., Podryga, V.O., Popov, I.V., Popov, S.B., Rahimly, P.I., & Kazakevich, G.I. (2019). Numerical simulation in problems with dissociation of gas hydrates in a porous medium in one-dimensional formulation. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 161(2), 205–229. [CrossRef] [Google Scholar]
  22. Sudakov, А.K., Dreus, A.Yu., Khomenko, О.Ye., & Sudakova, D.A. (2017). Analytical study of heat transfer in absorptive horizons of borehole at forming cryogenic protecting of the plugging material. Naukovyy Visnyk Natsional’noho Hirnychoho Unyversytetu, (3), 38–42. [Google Scholar]
  23. Vasil’ev, V.I., Popov, V.V., & Tsypkin, G.G. (2006). Numerical investigation of the decomposition of gas hydrates coexisting with gas in natural reservoirs. Fluid Dynamics, 41(4), 599–605. [CrossRef] [Google Scholar]
  24. Selim, M.S., & Sloan, E.D. (1989). Heat and mass transfer during the dissociation of hydrates in porous media. AIChE Journal, 35(6), 1049–1052. [CrossRef] [Google Scholar]
  25. Sudakov, А., Dreus, A., Ratov, B., & Delikesheva, D. (2018). Theoretical bases of isolation technology for swallowing horizons using thermoplastic materials. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(428), 72–80. [Google Scholar]
  26. Eckert, E.R.G., & Drake, Jr.R.M. (1972). Analysis of heat and mass transfer. Tokyo, Japan: McGraw-Hill. [Google Scholar]
  27. Yin, Z., Moridis, G., Chong, Z.R., Tan, H.K., & Linga, P. (2017). Numerical analysis of experiments on thermally induced dissociation of methane hydrates in porous media. Industrial & Engineering Chemistry Research, 57(17), 5776–5791. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.