Open Access
Issue |
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
|
|
---|---|---|
Article Number | 01003 | |
Number of page(s) | 12 | |
DOI | https://doi.org/10.1051/e3sconf/202123001003 | |
Published online | 18 January 2021 |
- Kvenvolden, K. (1993). Gas hydrates – geological perspectives and global change. Reviews of Geophysics, 31(2), 173–187. https://doi.org/10.1029/93rg00268 [CrossRef] [Google Scholar]
- Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b17547 [CrossRef] [Google Scholar]
- Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b19901 [CrossRef] [Google Scholar]
- Dreus, A.Уu., Bоndarenkо, V.I., Biletskуi, V.S., & Lуsenkо, R.S. (2020). Mathematical simulatiоn оf heat and mass exchange prоcesses during dissоciatiоn оf gas hуdrates in a pоrоus medium. Naukоvуi Visnуk Natsiоnalnоhо Hirnуchоhо Universуtetu, 5(179), 33–39. https://dоi.оrg/10.33271/nvngu/2020-5/033 [Google Scholar]
- Bondarenko V., Kovalevska I., Astafiev D., Malova O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, (277), 137–146. https://doi.org/10.4028/www.scientific.net/SSP.277.137 [CrossRef] [Google Scholar]
- Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated chemical additives on the process of gas hydrate formation. Eastern-European Journal of Enterprise Technologies, 6(91), 17–26. https://doi.org/10.15587/1729-4061.2018.123885 [CrossRef] [Google Scholar]
- Kvenvolden, K.A., & Rogers, B.W. (2005). Gaia’s breathglobal methane exhalations. Marine and Petroleum Geology, 22(4), 579–590. https://doi.org/10.1016/j.marpetgeo.2004.08.004 [CrossRef] [Google Scholar]
- Bondarenko, V., Svietkina, O., Lysenko, R., & Liu, B. (2020). Methane gas hydrates influence on sudden coal and gas outbursts during underground mining of coal deposits. E3S Web of Conferences, (201), 01002. https://doi.org/10.1051/e3sconf/202020101002 [CrossRef] [EDP Sciences] [Google Scholar]
- Sloan, E.D. (2003). Fundamental principles and applications of natural gas hydrates. Nature, 426(6964), 353–363. https://doi.org/10.1038/nature02135 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Sloan, E.D., Koh, C., & Sum, A.K. (2009). Natural gas hydrates in flow assurance. Golden, United States: Colorado School of Mines. [Google Scholar]
- Kinnari, K., Hundseid, J., Li, X., & Askvik, K.M. (2015). Hydrate management in practice. Journal of Chemical & Engineering Data, 60(2), 437–446. https://doi.org/10.1021/je500783u [CrossRef] [Google Scholar]
- Sloan, E., Koh, C., & Sum, A. (2010). Natural gas hydrates in flow assurance. London, United Kingdom: Elsevier, Gulf Professional Publishing. [Google Scholar]
- Zain, Z.M., Yang, J., Tohidi, B., Cripps, A., & Hunt, A. (2005). Hydrate monitoring and warning system: A new approach for reducing gas hydrate risks. SPE Europec/EAGE Annual Conference. https://doi.org/10.2118/94340-MS [Google Scholar]
- Mazloum, S., Chapoy, A., Yang, J., & Tohidi, B. (2011). Developing a robust hydrate early warning system. Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), 2155–2166. [Google Scholar]
- Kawasaki, T., Kikuchi, K., Terasaki, D., Okui, T., Miyata, K., Hirayama, H., & Masaru, I. (2002). Composition of guests in hydrates from gas mixture. Proceedings of the Fourth International Conference on Gas Hydrates, (2), 488. [Google Scholar]
- Tohidi, B., Anderson, R., Chapoy, A., Yang J., & Burgass, R.W. (2012). Do we have new solutions to the old problem of gas hydrates? Energy & Fuels, 26(7), 4053–4058. https://doi.org/10.1021/ef3002179 [CrossRef] [Google Scholar]
- Yang, J., Chapoy, A., Mazloum, S., & Tohidi, B. (2012). Minimizing hydrate inhibitor injection rates. International Petroleum Technology Conference, (27), 376–381. https://doi.org/10.2523/IPTC-17835-MS [Google Scholar]
- Tohidi, B., Chapoy, A., Yang, J., Ahmadloo, F., Valko, I., & Zain, Z.M. (2008), OTC 19247 developing hydrate monitoring and early warning systems. OTC 08 “Waves of Change”, (1), 515–523. [Google Scholar]
- Sloan, E.D., & Koh, C.A. (2008). Clathrate hydrates of natural gases. London, United Kingdom: CRC Press. https://doi.org/10.1201/9781420008494 [Google Scholar]
- Turner, D.J. (2005). Clathrate hydrate formation in water-in-oil dispersions. PhD Thesis. Golden, United States: Colorado School of Mines. [Google Scholar]
- Lee, J.D., Susilo, R., & Englezos, P. (2005) Methane-ethane and methane-propane hydrate formation and decomposition on water droplets. Chemical Engineering Science, (60), 4203–4212. https://doi.org/10.1016/j.ces.2005.03.003 [CrossRef] [Google Scholar]
- Ohmura, R., Ogawa, M., Yasuoka, K., & Mori, Y.H. (2003). Statistical study of clathrate-hydrate nucleation in a water/hydrochlorofluorocarbon system: Search for the nature of the “memory effect”. The Journal of Physical Chemistry, 107(22), 5289–5293. https://doi.org/10.1021/jp027094e [CrossRef] [Google Scholar]
- Parent, J.S., & Bishnoi, P.R. (1996). Investigations into the nucleation behaviour of natural gas hydrates. Chemical Engineering Communications, (144), 51–64. https://doi.org/10.1080/00986449608936444 [CrossRef] [Google Scholar]
- Sloan, E.D., & Koh, C.A. (2008). Clathrate hydrates of natural gases. New York, United States: Taylor and Francis. https://doi.org/10.1201/9781420008494 [Google Scholar]
- Buchanana, P., Soper, A.K., Thompson, H., Westacott, R.E., Creek, J.L., Hobson, G., & Koh, C.A. (2005). Search for memory effects in methane hydrate: Structure of water before hydrate formation and after hydrate decomposition”. Journal of Chemical Physics, 123 (16),4507. https://doi.org/10.1063/1.2074927 [Google Scholar]
- Sloan, E.D., Subramanian, S., Matthews, P.N., Lederhos, J.P., & Khokhar, A.A. (1998). Quantifying hydrate formation and kinetic inhibition. Industrial & Engineering Chemistry Research, 37(8), 3124–3132. https://doi.org/10.1021/ie970902h [CrossRef] [Google Scholar]
- Bishnoi, P.R., & Natarajan, V. (1996). Formation and decomposition of gas hydrates. Fluid Phase Equilibria, 117(1-2), 68–177. https://doi.org/10.1016/0378-3812(95)02950-8 [CrossRef] [Google Scholar]
- Englezos, P., Kalogerakis, N., Dholabhai, P.D., & Bishnoi, P.R. (1987). Kinetics of formation of methane and ethane gas hydrates. Chemical Engineering Science, 42(11), 2647–2658. https://doi.org/10.1016/0009-2509(87)87015-X [CrossRef] [Google Scholar]
- Sloan, E.D. (1998). Gas hydrates: Review of physical/chemical properties. Energy & Fuels, 12(2), 191–196. https://doi.org/10.1021/ef970164 [CrossRef] [Google Scholar]
- Mazloum, S., Chapoy, A., Yang, J., & Tohidi, B. (2011). Online monitoring of hydrate safety margin. Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011). [Google Scholar]
- Babakhani, S.M., Bouillot, B., Ho-Van, S., Douzet, J., & Herri, J.-M. (2018). A review on hydrate composition and capability of thermodynamic modeling to predict hydrate pressure and composition. Fluid Phase Equilibria, (472), 22–38. https://doi.org/10.1016/j.fluid.2018.05.007 [CrossRef] [Google Scholar]
- Song, G., Li, Y., Wang, W., Jiang, K., Ye, X., & Zhao, P. (2017). Investigation of hydrate plugging in natural gas + diesel oil + water systems using a high-pressure flow loop. Chemical Engineering Science, (158), 480–489. https://doi.org/10.1016/j.ces.2016.10.045 [CrossRef] [Google Scholar]
- Ruan, C., Ding, L., Shi, B., Huang, Q., & Gong, J. (2017). RSC Advances, (7), 48127–48135. https://doi.org/10.1039/C7RA09269E [CrossRef] [Google Scholar]
- Nicholas, J.W., Koh, C.A., Sloan, E.D., Nuebling, L., He, H., & Horn, B. (2009). Measuring hydrate/ice deposition in a flow loop from dissolved water in live liquid condensate. AIChE Journal, 55(7), 1882–1888. https://doi.org/10.1002/aic.11874 [CrossRef] [Google Scholar]
- Joshi, S.V., Grasso, G.A., Lafond, P.G., Rao, I., Webb, E., Zerpa, L.E., Sloan, E.D., Koh, C.A., & Sum, A.K. (2013). Experimental flowloop investigations of gas hydrate formation in high water cut systems. Chemical Engineering Science. (97), 198–209. https://doi.org/10.1016/j.ces.2013.04.019 [CrossRef] [Google Scholar]
- Chen, K.-L., Yan, G.-J., Chen, C.-Y., Sun, B., Liu, N., Ren, D.-J., Shen, M., Niu, Y.-N., Li, N., & Sum, A.K. (2015). Insights into the formation mechanism of hydrate plugging in pipelines. Chemical Engineering Science, (122), 284–290. https://doi.org/10.1016/j.ces.2014.09.039 [CrossRef] [Google Scholar]
- Lv, X.F., Shi, B.H., Wang, Y., Tang, Y.X., Wang, L., & Gong, J.Y. (2015). Experimental study on hydrate induction time of gas-saturated water-in-oil emulsion using a high-pressure flow loop. Oil & Gas Science and Technology – Revue d’IFP Energies Nouvelles, 70(6), 1111–1124. https://doi.org/10.2516/ogst/2014032 [CrossRef] [Google Scholar]
- Eugene, A., Smelik, H.E., & King, Jr. (1997). Crystal-growth studies of natural gas clathrate hydrates using a pressurized optical cell. American Mineralogist, (82), 88–98. https://doi.org/10.2138/am-1997-1-211 [CrossRef] [Google Scholar]
- Kobayashi, I., Ito, Y., & Mori, Y.H. (2001). Microscopic observations of clathrate hydrate films formed at liquid/liquid interfaces. I. Morphology of hydrate films. Chemical Engineering Science, 56(14), 4331–4338. https://doi.org/10.1016/S0009-2509(00)00544-3 [CrossRef] [Google Scholar]
- Freer, E.M., Selim, S.M., & Sloan, E.D. (2001). Methane hydrate film growth kinetics. Fluid Phase Equilibria, 185(1-2), 65–75. https://doi.org/10.1016/S0378-3812(01)00457-5 [CrossRef] [Google Scholar]
- Choukroun, M., Grasset, O., Tobie, G., & Sotin, C. (2010). Stability of methane clathrate hydrates under pressure: Influence on out gassing processes of methane on Titan. Icarus, 205 (2),581–593 https://doi.org/10.1016/j.icarus.2009.08.011 [NASA ADS] [CrossRef] [Google Scholar]
- Imasato, K., Aifaa, M., & Ohmur, R. (2013) Crystal growth of clathrate hydrate in flowing liquid water system saturated with methane gas. Crystal Growth & Design, 15(2), 559–563. https://doi.org/10.1299/jsmemecj.2013._G061046-1 [Google Scholar]
- Seo, Y., & Kang, S-P. (2011). Dependence of drawdown pressure on the hydrate reformation during methane hydrate production and its inhibition with kinetic hydrate inhibitors. Proceedings of the 7th International Conference on Gas Hydrates (ICGH 2011), 137–138. [Google Scholar]
- Bin, D., Zhang, L., Wu, X., Ning, F., Tu, Y., & Jiang, G. (2008). Effect of SDS and THF on formation of methane-containing hydrates in pure water. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). [Google Scholar]
- Pedchenko, L.O., & Pedchenko, M.M. (2014). The forcibly preservation of gas hydrate blocks by layer of ice. Mining of Mineral Deposits, 8(3), 277–286. https://doi.org/10.15407/mining08.03.277 [CrossRef] [Google Scholar]
- Melnikov, V.P., Nesterov, A.N., Reshetnikov, A.M., & Zavodovsk, A.G. (2009). Evidence of liquid water formation during methane hydrates dissociation below the ice point. Chemical Engineering Science, (64), 1160–1166. https://doi.org/10.1016/j.ces.2008.10.067 [CrossRef] [Google Scholar]
- Chou, I-M., Sharma, A., Burruss, R.C., Shu, J., Mao, H., Hemley, R.J., Goncharov, A.F., Stern, L.A., & Kirby, S.H. (2000). Transformations in methane hydrates. Proceedings of the National Academy of Sciences, 97(25), 13484–13487. https://doi.org/10.1073/pnas.250466497 [CrossRef] [Google Scholar]
- Cheng, C-X., Tian, Y-J., Wang, F.W., Zheng, J-L., Zhang, J., Li, L-W., & Yang, P. (2019). Experimental study on the morphology and memory effect of methane hydrate reformation. Energy & Fuels, 33(4), 3439–3447. https://doi.org/10.1021/acs.energyfuels.8b02934 [CrossRef] [Google Scholar]
- Rao, I., Koh, C.A., Sloan, E.D., & Sum, A.K. (2013). Gas hydrate deposition on a cold surface in water-saturated gas systems. Industrial & Engineering Chemistry Research, 52(18), 6262–6269. https://doi.org/10.1021/ie400493a [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.