Open Access
Issue
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01006
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202123001006
Published online 18 January 2021
  1. Bushkovsky, A. (1979). Characteristic system of distribution of parameters. Nauka Press. [Google Scholar]
  2. De Read, J.R. (1987). Pipes and pipeline international, 32 (1),8. [Google Scholar]
  3. Davitashvili, T. (2009). Natural disasters and surface and subsurface water pollution risk assessment for some regions of Georgia. NATO Science for Peace and Security Series C: Environmental Security, 83–89. https://doi.org/10.1007/978-90-481-2344-5_9 [CrossRef] [Google Scholar]
  4. Gong, J., Shi, B., & Zhao, J. (2010). Natural gas hydrate shell model in gas-slurry pipeline flow. Journal of Natural Gas Chemistry, 19(3), 261–266. https://doi.org/10.1016/s1003-9953(09)60062-1 [CrossRef] [Google Scholar]
  5. Taylor, C.E., Kwan, J.T. (2004). Advances in the study of gas hydrates. London, United Kingdom: Kluwer Academic/Plenum Publishers Press. [CrossRef] [Google Scholar]
  6. Rice, W. (2006). Hydrogen production from methane hydrate with sequestering of carbon dioxide. International Journal of Hydrogen Energy, 31(14), 1955–1963. https://doi.org/10.1016/j.ijhydene.2006.01.017 [CrossRef] [Google Scholar]
  7. Steinberg, M. (1989). Modern and prospective technologies for hydrogen production from fossil fuels. International Journal of Hydrogen Energy, 14(11), 797–820. https://doi.org/10.1016/0360-3199(89)90018-9 [CrossRef] [Google Scholar]
  8. Ahsan, S. (2013). Transport by existing gas pipeline of gas mixture. International Journal of Chemistry, 1(15), 1–6. [Google Scholar]
  9. Davitashvili, T., Gubelidze, G., & Sharikadze, M. (2015). Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics, 29(4), 34–37. [Google Scholar]
  10. Environmental and Social Impact Assessment Baku – Tbilisi – Ceihan. (2012). Non-technical Executive Summary Project No: P8107, 1–312. [Google Scholar]
  11. Davitashvili, T., Gubelidze, G., & Samkharadze, I. (2011). Leak detection in oil and gas transmission pipelines. In book Informational and Communication Technologies – Theory and Practice. New York: Inprint Nova. [Google Scholar]
  12. Zarinabadi, S., & Samimi, A. (2011). Problems of hydrate formation in oil and gas pipes deals. Australian Journal of Basic and Applied Sciences, 5(12), 741–745. [Google Scholar]
  13. Sloan, E.D. (2003). Fundamental principles and applications of natural gas hydrates. Nature, 426(6964), 353–359. https://doi.org/10.1038/nature02135 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  14. Yufin, V.A. (1978). Gas and oil pipeline transportation. Moscow, Russian Federation: Nedra Press. [Google Scholar]
  15. Østergaard, K.K., Tohidi, B., Danesh, A., Todd, A.C., & Burgass, R.W. (2000). Gas hydrate equilibria of 2,3-dimethylbutane and benzene with methane and nitrogen. Chemical Engineering Research and Design, 78(5), 731–737. https://doi.org/10.1205/026387600527914 [CrossRef] [Google Scholar]
  16. Tohidi, B., Danesh, A., Todd, A.C., Burgass, R.W., & Østergaard, K.K. (1997). Equilibrium data and thermodynamic modelling of cyclopentane and neopentane hydrates. Fluid Phase Equilibria, 138(1-2), 241–250. https://doi.org/10.1016/s0378-3812(97)00164-7 [CrossRef] [Google Scholar]
  17. Haghighi, H., Azarinezhad, R., Chapoy, A., Anderson, R., & Tohidi, B. (2007). Hydraflow: Avoiding gas hydrate problems. EUROPEC/EAGE Conference and Exhibition. https://doi.org/10.2118/107335-ms [Google Scholar]
  18. Østergaard, K.K., Masoudi, R., Tohidi, B., Danesh, A., & Todd, A.C. (2005). A general correlation for predicting the suppression of hydrate dissociation temperature in the presence of thermodynamic inhibitors. Journal of Petroleum Science and Engineering, 48(1-2), 70–80. https://doi.org/10.1016/j.petrol.2005.04.002 [CrossRef] [Google Scholar]
  19. Mohammadi, A.H., Tohidi, B., & Burgass, R.W. (2003). Equilibrium data and thermodynamic modeling of nitrogen, oxygen, and air clathrate hydrates. Journal of Chemical & Engineering Data, 48(3), 612–616. https://doi.org/10.1021/je025608x [CrossRef] [Google Scholar]
  20. Mohammadi, A.H., Chapoy, A., Tohidi, B., & Richon, D. (2006). Gas solubility: A key to estimating the water content of natural gases. Industrial & Engineering Chemistry Research, 45(13), 4825–4829. https://doi.org/10.1021/ie051337i [CrossRef] [Google Scholar]
  21. Avlonitis, D. (1994). A scheme for reducing experimental heat capacity data of gas hydrates. Industrial & Engineering Chemistry Research, 33(12), 3247–3255. https://doi.org/10.1021/ie00036a046 [CrossRef] [Google Scholar]
  22. Bobrovski, S.A. (1976). Gas pipeline transportation. Moscow, Russian Federation: Nauka Press. [Google Scholar]
  23. Matko, D., Geiger, G., & Gregoritza, W. (2000). Pipeline simulation techniques. Mathematics and Computers in Simulation, 52(3-4), 211–230. https://doi.org/10.1016/s0378-4754(00)00152-x [CrossRef] [Google Scholar]
  24. Tikhonov, A.N., & Samarskii, A.A. (1977). Equations of mathematical physics. Moscow, Russian Federation: Nauka Press. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.