Open Access
Issue
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01007
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202123001007
Published online 18 January 2021
  1. Bangs, N.L., Sawyer, D.S., & Golovchenko, X. (1993). Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple junction. Geology, 2(1), 905–908. https://doi.org/10.1130/0091-7613(1993)021<0905:fgatbo>2.3.co;2 [CrossRef] [Google Scholar]
  2. Brown, K.M., Bangs, N.L-, Froelich, P.N., & Kvenvolden, K.A. (1996). The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region. Earth and Planetary Science Letters, 139(3-4), 471–483. https://doi.org/10.1016/0012-821x(95)00243-6 [CrossRef] [Google Scholar]
  3. Grevemeyer, I., Kaul, N., & Díaz-Naveas, J.L. (2006). Geothermal evidence for fluid flow through the gas hydrate stability field off Central Chile-transient flow related to large subduction zone earthquakes? Geophysical Journal International, 166(1), 461–468. https://doi.org/10.1111/j.1365-246x.2006.02940.x [CrossRef] [Google Scholar]
  4. Loreto, M.F., Tinivella, U., & Ranero, C.R. (2007). Evidence for fluid circulation, overpressure and tectonic style along the Southern Chilean margin. Tectonophysics, 429(3-4), 183–200. https://doi.org/10.1016/j.tecto.2006.09.016 [CrossRef] [Google Scholar]
  5. Polonia, A., Brancolini, G., Torelli, L., & Vera, E. (1999). Structural variability at the active continental margin off southernmost Chile. Journal of Geodynamics, 27(3), 289–307. https://doi.org/10.1016/s0264-3707(98)00003-9 [CrossRef] [Google Scholar]
  6. Polonia, A., Brancolini, G., & Torelli, L. (2001). The accretionary complex of southernmost Chile from the strait of Magellan to the Drake passage. Terra Antarctic, (8), 87–98. [Google Scholar]
  7. Polonia, A., Torelli, L., Brancolini, G., & Loreto, M.F. (2007). Tectonic accretion versus erosion along the southern Chile trench: oblique subduction and margin segmentation. Tectonics, 26 (3),TC3005. https://doi.org/10.1029/2006tc001983 [CrossRef] [Google Scholar]
  8. Polonia, A., & Torelli, L. (2007). Antarctic/Scotia plate convergence off southernmost Chile. Geologica Acta, (5), 295–306. [Google Scholar]
  9. Vargas-Cordero, I.C., Tinivella, U., Accaino, F., Loreto, M.F., Fanucci, F., & Reichert, C. (2010) Analyses of bottom simulating reflections offshore Arauco and Coyhaique (Chile). Geo Marine Letters, 30(3-4), 271–281. https://doi.org/10.1007/s00367-009-0171-5 [CrossRef] [Google Scholar]
  10. Vargas-Cordero, I., Tinivella, U., Accaino, F., Loreto, M.F.б & Fanucci, F. (2010). Thermal state and concentration of gas hydrate and free gas of Coyhaique Chilean Margin (44°30′ S). Marine and Petroleum Geology, 27(5), 1148–1156. https://doi.org/10.1016/j.marpetgeo.2010.02.011 [CrossRef] [Google Scholar]
  11. Vargas-Cordero, I., Tinivella, U., Accaino, F., Fanucci, F., Loreto, M.F., Lascano, M.E., & Reichert, C. (2011). Basal and frontal accretion processes versus BSR сharacteristics along the Chilean margin. Journal of Geological Research, (2011), 1–10. https://doi.org/10.1155/2011/846101 [CrossRef] [Google Scholar]
  12. Vargas Cordero, I., Tinivella, U., Villar Muñoz, L., & Giustiniani, M. (2016). Gas hydrate and free gas estimation from seismic analysis offshore Chiloé island (Chile). Andean Geology, 43(3), 263–274. https://doi.org/10.5027/andgeov43n3-a02 [CrossRef] [Google Scholar]
  13. Vargas-Cordero, I., Tinivella, U., & Villar-Muñoz, L. (2017). Gas hydrate and free gas concentrations in two sites inside the Chilean margin (Itata and Valdivia Offshores). Energies, 10 (12),2154. https://doi.org/10.3390/en101221543 [CrossRef] [Google Scholar]
  14. Vargas-Cordero, I., Tinivella, U., Villar-Muñoz, L., & Bento, J. (2018). High gas hydrate and free gas concentrations: An explanation for seeps offshore South Mocha Island. Energies, 11 (11),3062. https://doi.org/10.3390/en11113062 [CrossRef] [Google Scholar]
  15. Villar-Muñoz, L., Behrmann, J. H., Diaz-Naveas, J., Klaeschen, D., & Karstens, J. (2013). Heat flow in the southern Chile forearc controlled by large-scale tectonic processes. Geo-Marine Letters, 34(2-3), 185–198. https://doi.org/10.1007/s00367-013-0353-z [CrossRef] [Google Scholar]
  16. Villar-Muñoz, L., Bento, J.P., Klaeschen, D., Tinivella, U., Vargas-Cordero, I. de la C., & Behrmann, J.H. (2018). A first estimation of gas hydrates offshore Patagonia (Chile). Marine and Petroleum Geology, (96), 232–239. https://doi.org/10.1016/j.marpetgeo.2018.06.002 [CrossRef] [Google Scholar]
  17. Villar-Muñoz, L., Vargas-Cordero, I., Bento, J., Tinivella, U., Fernandoy, F., Giustiniani, M., & Calderón-Díaz, S. (2019). Gas hydrate estimate in an area of deformation and high heat flow at the chile triple junction. Geosciences, 9 (1),28. https://doi.org/10.3390/geosciences9010028 [CrossRef] [Google Scholar]
  18. Coffin, R., Pohlman, J., Gardner, J., Downer, R., Wood, W., Hamdan, L., & Diaz, J. (2007). Methane hydrate exploration on the mid Chilean coast: A geochemical and geophysical survey. Journal of Petroleum Science and Engineering, 56(1-3), 32–41. https://doi.org/10.1016/j.petrol.2006.01.013 [CrossRef] [Google Scholar]
  19. Geersen, J., Scholz, F., Linke, P., Schmidt, M., Lange, D., Behrmann, J.H., & Hensen, C. (2016). Fault zone controlled seafloor methane seepage in the rupture area of the 2010 Maule earthquake, Central Chile. Geochemistry, Geophysics, Geosystems, 17(11), 4802–4813. https://doi.org/10.1002/2016gc006498 [CrossRef] [Google Scholar]
  20. Jessen, G.L., Pantoja, S., Gutiérrez, M.A., Quiñones, R.A., González, R.R., Sellanes, J., & Hinrichs, K.-U. (2011). Methane in shallow cold seeps at Mocha Island off central Chile. Continental Shelf Research, 31(6), 574–581. https://doi.org/10.1016/j.csr.2010.12.012 [CrossRef] [Google Scholar]
  21. Sellanes, J., Quiroga, E., & Gallardo, V.A. (2004). First direct evidence of methane seepage and associated chemosynthetic communities in the bathyal zone off Chile. Journal of the Marine Biological Association of the United Kingdom, 84(5), 1065–1066. https://doi.org/10.1017/s0025315404010422h [CrossRef] [Google Scholar]
  22. Sellanes, J., & Krylova, E. (2005). A new species of Calyptogena (Bivalvia: Vesicomyidae) from a recently discovered methane seepage area off Concepción Bay, Chile (~36°S). Journal of the Marine Biological Association of the United Kingdom, 85(4), 969–976. https://doi.org/10.1017/s0025315405011963 [CrossRef] [Google Scholar]
  23. Sellanes, J., Quiroga, E., & Neira, C. (2008). Megafauna community structure and trophic relationships at the recently discovered Concepción Methane Seep Area, Chile, ~36°S. ICES Journal of Marine Science, 65(7), 1102–1111. https://doi.org/10.1093/icesjms/fsn099 [CrossRef] [Google Scholar]
  24. Vargas-Cordero, I., Tinivella, U., Villar-Muñoz, L., Cárcamo, C., Bento, J. & Giustiniani, M. (2018). Gas hydrate offshore Chilean margin. FIERY ICE 2018. Southwest Petroleum University, Chengdu, China (October 31 – November 3). [Google Scholar]
  25. Tinivella, U. (1999). A method for estimating gas hydrate and free gas concentrations in marine sediments. Boll Geofis Teorica Applicata, (40), 19–30. [Google Scholar]
  26. Tinivella, U. (2002). The seismic response to overpressure versus gas hydrate and free gas concentration. Journal of Seismic Exploration, (11), 283–305. [Google Scholar]
  27. Cisternas, M., Atwater, B.F., Torrejón, F., Sawai, Y., Machuca, G., Lagos, M., & Husni, M. (2005). Predecessors of the giant 1960 Chile earthquake. Nature, 437(7057), 404–407. https://doi.org/10.1038/nature03943 [CrossRef] [PubMed] [Google Scholar]
  28. Forsyth, D.W. (1975). Fault plane solutions and tectonics of the South Atlantic and Scotia Sea. Journal of Geophysical Research, 80(11), 1429–1443. https://doi.org/10.1029/jb080i011p01429 [CrossRef] [Google Scholar]
  29. Cunningham, W.D. (1993). Strike-slip faults in the southernmost andes and the development of the Patagonian orocline. Tectonics, 12(1), 169–186. https://doi.org/10.1029/92tc01790 [CrossRef] [Google Scholar]
  30. Bangs, N.L., & Cande, S.C. (1997). Episodic development of a convergent margin inferred from structures and processes along the southern Chile margin. Tectonics, 16(3), 489–503. https://doi.org/10.1029/97tc00494 [CrossRef] [Google Scholar]
  31. Ramos, V.A. (1999). Plate tectonic setting of the Andean Cordillera. Episodes, 22(3), 183–190. https://doi.org/10.18814/epiiugs/1999/v22i3/005 [CrossRef] [Google Scholar]
  32. Grevemeyer, I., Diaz-Naveas, J.L., Ranero, C.R., & Villinger, H.W. (2003). Heat flow over the descending Nazca plate in central Chile, 32°S to 41°S: observations from ODP Leg 202 and the occurrence of natural gas hydrates. Earth and Planetary Science Letters, 213(3-4), 285–298. https://doi.org/10.1016/s0012-821x(03)00303-0 [CrossRef] [Google Scholar]
  33. Melnick, D. (2007). Neogene seismotectonics of the South-Central Chile Margin: Subduction-related processes over various temporal and spatial scales. Ph.D. Thesis. Potsdam, Germany: Universität Potsdam. [Google Scholar]
  34. Cembrano, J., & Lara, L. (2009). The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: A review. Tectonophysics, 471(1-2), 96–113. https://doi.org/10.1016/j.tecto.2009.02.038 [CrossRef] [Google Scholar]
  35. Vargas Cordero, I. (2009). Gas hydrate occurrence and morphostructures along Chilean margin. Ph.D. Thesis. Trieste, Italy: University of Trieste. [Google Scholar]
  36. Manea, V. C., Pérez-Gussinyé, M., & Manea, M. (2012). Chilean flat slab subduction controlled by overriding plate thickness and trench rollback. Geology, 40(1), 35–38. https://doi.org/10.1130/g32543.1 [CrossRef] [Google Scholar]
  37. Geersen, J., Völker, D., Behrmann, J.H., Reichert, C., & Krastel, S. (2011). Pleistocene giant slope failures offshore Arauco Peninsula, Southern Chile. Journal of the Geological Society, 168(6), 1237–1248. https://doi.org/10.1144/0016-76492011-027 [CrossRef] [Google Scholar]
  38. Marsaglia, K.M., Torrez, X.V., Padilla, I., & Rimkus, K.C. (1995). Provenance of Pleistocene and Pliocene sand and sandstone, ODP leg 141, Chile margin. In Proceedings of the Ocean Drilling Program. Scientific Results, (141), 133–151. Lewis, S.D., Behrmann, J.H., Musgrave, R.J., Cande, S.C. (Eds.). https://doi.org/10.2973/odp.proc.sr.141.005.1995 [Google Scholar]
  39. Tinivella, U., & Carcione, J.M. (2001). Estimation of gas-hydrate concentration and free-gas saturation from log and seismic data. The Leading Edge, 20(2), 200–203. https://doi.org/10.1190/1.1438914 [CrossRef] [Google Scholar]
  40. Alessandrini, G., Tinivella, U., Giustiniani, M., de la Cruz Vargas-Cordero, I., & Castellaro, S. (2019). Potential instability of gas hydrates along the Chilean Margin due to ocean warming. Geosciences, 9 (5),234. https://doi.org/10.3390/geosciences9050234 [CrossRef] [Google Scholar]
  41. Bangs, N.L., & Brown, K.M. (1995). Regional heat flow in the vicinity of the Chile Triple Junction constrained by the depth of the bottom simulating reflector. Proceedings of the Ocean Drilling Program, (141), 253–258. https://doi.org/10.2973/odp.proc.sr.141.043.1995 [Google Scholar]
  42. Mix, A.C., Tiedemann, R., Blum, P. & Shipboard Scientific Party Proceedings of the ODP (2003). Initial Reports; Ocean Drilling Program: College Station. Ostin, Texas, United States. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.