Open Access
Issue
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01016
Number of page(s) 14
DOI https://doi.org/10.1051/e3sconf/202123001016
Published online 18 January 2021
  1. Koroviaka, Ye., Pinka, J., Tymchenko, S., Rastsvietaiev, V., Astakhov, V., & Dmytruk, O. (2020). Elaborating a scheme for mine methane capturing while developing coal gas seams. Mining of Mineral Deposits, 14(3), 21–27. https://doi.org/10.33271/mining14.03.021 [CrossRef] [Google Scholar]
  2. Korovyaka, Ye.A., Vasilenko, Ye.А., & Manukyan, E.S. (2014). Regeneration of methane released from landfills, and possibility of its utilization in Dnipropetrovs’k region. Heotekhnichna Mekhanika, (117), 215–224. [Google Scholar]
  3. Korovyaka, Ye., Astakhov, V., & Manukyan, E. (2014). Perspectives of mine methane extraction in conditions of Donets’k gas-coal basin. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 311–316. https://doi.org/10.1201/b17547-54 [Google Scholar]
  4. Koroviaka, Ye., Rastsvietaiev, V., Dmytruk, O., & Tykhonenko, V. (2017). Prospects to use biogas of refuse dams of Dnipropetrovsk region (Ukraine) as alternative energy carrier. Mechanics, Materials Science & Engineering, (11), 1–9. https://doi.org/10.2412/mmse.40.34.18 [Google Scholar]
  5. Dudlia, M., Pinka, J., Dudlia, K., Rastsvietaiev, V., & Sidorova, M. (2018). Influence of dispersed systems on exploratory well drilling. Solid State Phenomena, (277), 44–53. https://doi.org/10.4028/www.scientific.net/SSP.277.44 [CrossRef] [Google Scholar]
  6. Dudlia, M., Sirik, V., Rastsvetaev, V., & Morozova, T. (2014). Rotary drilling system efficiency reserve. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 123–129. https://doi.org/10.1201/b17547-23 [Google Scholar]
  7. Saw, V.K., Ahmad, I., Mandal, A., Udayabhanu, G., & Laik, S. (2012). Methane hydrate formation and dissociation in synthetic seawater. Journal of Natural Gas Chemistry, (21), 624–632. https://doi.org/10.1016/S1003-9953(11)60411-8 [CrossRef] [Google Scholar]
  8. Komatsu, H., Ota, M., Smith Jr., R.L., & Inomata, H. (2013). Review of CO2-CH4 clathrate hydrate replacement reaction laboratory studies – properties and kinetics. Journal of the Taiwan Institute of Chemical Engineers, (44), 517–537. https://doi.org/10.1016/j.jtice.2013.03.010 [CrossRef] [Google Scholar]
  9. Su, Zh., Moridis, G.J., Zhang, K., & Wu, N. (2012). A huff-and-puff production of gas hydrate deposits in Shenhu area of South China Sea through a vertical well. Journal of Petroleum Science and Engineering, (86-87), 54–61. https://doi.org/10.1016/j.petrol.2012.03.020 [CrossRef] [Google Scholar]
  10. Alekseev, V.I. (2013). The beetles (Insecta: Coleoptera) of Baltic amber: the checklist of described species and preliminary analysis of biodiversity. Zoology and Ecology, 23(1),5–12. https://doi.org/10.1080/21658005.2013.769717 [CrossRef] [Google Scholar]
  11. Honchar, A., & Fedoseienkov, S. (2016). Geo- and hydroacoustic complex as a study of interconnection between processes in waters and bottom sediments. Geodynamics, 21(2),101–108. https://doi.org/10.23939/jgd2016.02.101 [CrossRef] [Google Scholar]
  12. Dreus, A., Sudakov, А.К., Lysenko, K., & Коzhevnikov, А.А. (2016) Investigation of heating of the drilling bits and definition of the energy efficient drilling modes. Eastern-European Journal of Enterprise Technologies. Technologies, 3 (7(81)),41–46. https://doi.org/10.15587/1729-4061.2016.71995 [CrossRef] [Google Scholar]
  13. Dreus, A.J., Sudakov, А.К., Коzhevnikov, А.А., & Vahalin, J.M. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3(153), 5–9. [Google Scholar]
  14. Kozhevnykov, A., & Dreus, A. (2018). Power consumption of rock decomposition process during diamond core drilling using pulse flushing. Mining of Mineral Deposits, 12(3), 22–27. https://doi.org/10.15407/mining12.03.022 [CrossRef] [Google Scholar]
  15. Ihnatov, A.O. (2012). Nekotoryye voprosy razrusheniya gornykh porod pri ispolzovanii gidromekhanicheskogo snaryada. Porodorazrushayushchiy i Metalloobrabatyvayushchiy Instrument – Tekhnika, Tekhnologiya Yego Izgotovleniya i Primeneniya, (15), 89–93. [Google Scholar]
  16. Ihnatov, A.O. (2018). Perspectives application of coiled tubing in bore holes. Porodorazrushayushchiy i Metalloobrabatyvayushchiy Instrument – Tekhnika, Tekhnologiya Yego Izgotovleniya i Primeneniya, (21), 132–139. [Google Scholar]
  17. Davydenko, O.M., & Ihnatov, A.O. (2019). Mechanics of effective destruction of rocks by chain-drilling bits rollingcutter. Porodorazrushayushchiy i Metalloobrabatyvayushchiy Instrument – Tekhnika, Tekhnologiya Yego Izgotovleniya i Primeneniya, (22), 148–157. [Google Scholar]
  18. Ighnatov, A. (2016). Technological characteristics of the device for bore hole cleaning. Mining of Mineral Deposit, 10(2),85–90. https://doi.org/10.15407/mining10.02.085 [CrossRef] [Google Scholar]
  19. Ighnatov, A. (2016). Research into parameters characterizing the process of withdrawing clay-mud formations from bore hole vuggy zones. Mining of Mineral Deposit, 10(1), 63–68. https://doi.org/10.15407/mining10.01.063 [CrossRef] [Google Scholar]
  20. Davydenko, O., Ratov B., & Ighnatov, A. (2016). Determination of basic calculation and experimental parameters of device for bore hole cleaning. Mining of Mineral Deposit, 10(3), 52–58. https://doi.org/10.15407/mining10.03.052 [CrossRef] [Google Scholar]
  21. Davidenko, A., Ratov, B., Ighnatov, A., & Tulepbergenov, A. (2016). K voprosu o neobkhodimosti obrabotki kavernoznykh zon skvazhin. Vestnik KazNITU, 114(2), 139–147. [Google Scholar]
  22. Davydenko, O., & Ignatov, A. (2015). Some features of work of device on preparation of bore hole to fastening. Mining of Mineral Deposit, 9(4), 500–506. https://doi.org/10.15407/mining09.04.500 [CrossRef] [Google Scholar]
  23. Korniyenko, V.Ya., Malanchuk, E.Z., Soroka, V.S., & Khrystyuk, A.O. (2018). Analysis of the existent technologies of amber mining. Resources and Resource-Saving Technologies in Mineral Mining and Processing, 209–232. [Google Scholar]
  24. Dychkovskyi, R., Vladyko, O., Maltsev, D., Cabana, E.C. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko-Geološko-Naftni Zbornik, 33(4), 73–82. https://doi.org/10.17794/rgn.2018.4.7 [CrossRef] [Google Scholar]
  25. Malanchuk, Ye., Korniienko, V., Moshynskyi, V., Soroka, V., Khrystyuk, A., & Malanchuk, Z. (2019). Regularities of hydromechanical amber extraction from sandy deposits. Mining of Mineral Deposits, 13 (1),49–57 https://doi.org/10.33271/mining13.01.049 [CrossRef] [Google Scholar]
  26. Malanchuk, Z., Korniienko, V., Malanchuk, Ye., Soroka, V., & Vasylchuk, O. (2018). Modeling the formation of high metal concentration zones in man-made deposits. Mining of Mineral Deposits, 12(2), 76–84. https://doi.org/10.15407/mining12.02.076 [CrossRef] [Google Scholar]
  27. Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining features of the process of heavy metals distribution in technogenic placers at hydraulic mining. Eastern-European Journal of Enterprise Technologies, 1(10(85)), 45–51. https://doi.org/10.15587/1729-4061.2017.92638 [CrossRef] [Google Scholar]
  28. Moshynskyi, V., Malanchuk, Z., Tsymbaliuk, V., Malanchuk, L., Zhomyruk, R., & Vasylchuk, O. (2020). Research into the process of storage and recycling technogenic phosphogypsum placers. Mining of Mineral Deposits, 14(2), 95–102. https://doi.org/10.33271/mining14.02.095 [CrossRef] [Google Scholar]
  29. Walter Henry Jeffery. (2015). Deep well drilling: The principles and practices of deep well drilling, and a hand book of useful information for the well driller. Palala Press. [Google Scholar]
  30. Biletskyy, V.S. (2013). Concise mining encyclopaedia (in 3 volumes). Donetsk, Ukraine: Donbas. [Google Scholar]
  31. Walter Henry Jeffery. (2018). Deep well drilling: The principles and practices of deep well drilling, and a hand book of useful information for the well driller. Franklin Classics Trade Press. [Google Scholar]
  32. Forest John Swears Sur. (2013). Oil prospecting, drilling and extraction. Nabu Press. [Google Scholar]
  33. Neskoromnykh, V.V., & Kalinin, A.G. (2008). Napravlennoye bureniye. Moskva, Rossiya: TsentrLitNefteGaz. [Google Scholar]
  34. Boyko, V.S., & Boyko, R.V. (2005). Pidzemna hidrohazodynamika. Lviv, Ukraina: Apriori. [Google Scholar]
  35. Boyko, V.S. (2004). Rozrobka ta ekspluatatsiia naftovykh rodovyshch. Kyiv, Ukraina: RealPrynt. [Google Scholar]
  36. Bondarenko, V., Sai, K., Prokopenko, K., & Zhuravlov, D. (2018). Thermodynamic and geomechanical processes research in the development of gas hydrate deposits in the conditions of the Black Sea. Mining of Mineral Deposits, 12(2), 104–115. https://doi.org/10.15407/mining12.02.104 [CrossRef] [Google Scholar]
  37. Drеus, А.Уu., Bоndаrеnkо, V.І., Bіlеtskуі, V.S., & Lуsеnkо, R.S. (2020). Mаthеmаtіcаl sіmulаtіоn оf hеаt аnd mаss еxchаngе prоcеssеs durіng dіssоcіаtіоn оf gаs hуdrаtеs іn а pоrоus mеdіum. Nаukоvуі Vіsnуk Nаtsіоnаlnоhо Hіrnуchоhо Unіvеrsуtеtu, 5 (179), https://dоі.оrg/10.33271/nvngu/2020-5/033 [Google Scholar]
  38. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b17547 [CrossRef] [Google Scholar]
  39. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b19901 [CrossRef] [Google Scholar]
  40. Yuan, Q., Sun, Ch.-Y., Yang, X., Maa, P.-Ch., Maa, Zh.-W., Liu, B., Maa, Q.-L., Yang, L.-Y., & Chen, G.-J. (2012). Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor. Energy, (40), 47–58. https://doi.org/10.1016/j.energy.2012.02.043 [CrossRef] [Google Scholar]
  41. Fitzgerald, G.C., Castaldi, M.J., & Zhou, Y. (2012). Large scale reactor details and results for the formation and decomposition of methane hydrates via thermal stimulation dissociation. Journal of Petroleum Science and Engineering, (94-95), 19–27. https://doi.org/10.1016/j.petrol.2012.06.018 [CrossRef] [Google Scholar]
  42. Vagnetti, R., Boswell, R., & Pratt, S. (2013). Researching the climate change implications of methane hydrates. Environment Coastal & Offshore (ECO), (January/Feburary), 28–33. [Google Scholar]
  43. Kalinin, A.G. (1997). Bureniye naklonnykh i gorizontalnykh skvazhin. Moskva, Rossiya: Nedra. [Google Scholar]
  44. Davidenko, A.N., & Ignatov, A.A. (2013). Abrazivno-mekhanicheskoye udarnoye bureniye skvazhin. Dnipropetrovsk, ukraina: Natsionalnyi hirnychyi universytet. [Google Scholar]
  45. Davidenko, A.N., Ratov, B.T., Pashchenko, A.A., & Ignatov, A.A. (2018). Vliyaniye gidrostaticheskogo davleniya na udarnoye abrazivno-mekhanicheskoye bureniye skvazhin. Almaty, Kazakhstan: Kaspiyskiy obshchestvennyy universitet. [Google Scholar]
  46. Ihnatov, A.O., & Viatkin, S.S. (2013). Kulestrumynnyy prystriy dlya burinnya sverdlovyn. Patent No. 102708. Kyiv, Ukraina. [Google Scholar]
  47. Ihnatov, A.O. (2017). Prystriy dlya stvorennya osovoho navantazhennya. Patent No. 114966. Kyiv, Ukraina. [Google Scholar]
  48. Vyrvinskyy, P.P., Kuzin, Yu.L., & Khomenko, V.L. (2010). Heolohorozviduvalna sprava i tekhnika bezpeky. Dnipropetrovsk, Ukraina: Natsionalnyi hirnychyi universytet. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.