Open Access
Issue
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01015
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202123001015
Published online 18 January 2021
  1. Archer, D., Buffett, B., & Brovkin, V. (2008). Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences, 106(49), 20596–20601. https://doi.org/10.1073/pnas.0800885105 [CrossRef] [Google Scholar]
  2. Boswell, R., & Collett, T.S. (2011). Current perspectives on gas hydrate resources. Energy & Environmental Science, 4(4), 1206–1215. https://doi.org/10.1039/c0ee00203h [CrossRef] [Google Scholar]
  3. Na, S., Lei, A., Hui, D., Jian, S., Xinjun, G. (2016). Discussion on natural gas hydrate production technologies. China Petroleum Exploration, 21 (5). [Google Scholar]
  4. Swaranjit Singh, A.A. (2015). Techniques for exploitation of gas hydrate (clathrates) an untapped resource of methane gas. Journal of Microbial & Biochemical Technology, 07 (02). https://doi.org/10.4172/1948-5948.1000190 [CrossRef] [Google Scholar]
  5. Yang, Y., He, Y., & Zheng, Q. (2017). An analysis of the key safety technologies for natural gas hydrate exploitation. Advances in Geo-Energy Research, 1(2), 100–104. https://doi.org/10.26804/ager.2017.02.05 [CrossRef] [Google Scholar]
  6. Sasaki, K., Yamakawa, T., & Sugai, Y. (2014). Integrated thermal gas production from methane hydrate formation. SPE/EAGE European Unconventional Resources Conference and Exhibition. https://doi.org/10.2118/167780-ms [Google Scholar]
  7. Li, Z., Lu, T., Tao, L., Li, B., Zhang, J., & Li, J. (2011). CO2 and viscosity breaker assisted steam huff and puff technology for horizontal wells in a super-heavy oil reservoir. Petroleum Exploration and Development, 38(5), 600–605. https://doi.org/10.1016/S1876-3804(11)60059-1 [CrossRef] [Google Scholar]
  8. Godec, M., & Koperna, G. (2014). Enhanced gas recovery and CO2 storage in gas shales: A summary review of its status and potential. Energy Procedia, (63), 5849–5857. https://doi.org/10.1016/j.egypro.2014.11.618 [CrossRef] [Google Scholar]
  9. Cha, M., Yin, X., Kneafsey, T., Johanson, B., Alqahtani, N., Miskimins, J., & Wu, Y.-S. (2014). Cryogenic fracturing for reservoir stimulation – Laboratory studies. Journal of Petroleum Science and Engineering, (124), 436–450. https://doi.org/10.1016/j.petrol.2014.09.003 [CrossRef] [Google Scholar]
  10. Charlez, P., Lemonnier, P., Ruffet, C., Bouteca, M.J., & Tan, C. (1996). Thermally induced fracturing: Analysis of a field case in North Sea. European Petroleum Conference. https://doi.org/10.2118/36916-ms [Google Scholar]
  11. Chen, W., Maurel, O., Reess, T., De Ferron, A.S., La Borderie, C., Pijaudier-Cabot, G., & Jacques, A. (2012). Experimental study on an alternative oil stimulation technique for tight gas reservoirs based on dynamic shock waves generated by Pulsed Arc Electrohydraulic Discharges. Journal of Petroleum Science and Engineering, (88-89), 67–74. https://doi.org/10.1016/j.petrol.2012.01.009 [CrossRef] [Google Scholar]
  12. Barati, R., & Liang, J.-T. (2014). A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells. Journal of Applied Polymer Science, 131 (16). https://doi.org/10.1002/app.40735 [CrossRef] [Google Scholar]
  13. Gallegos, T.J., & Varela, B.A. (2015). Trends in hydraulic fracturing distributions and treatment fluids, additives, proppants, and water volumes applied to wells drilled in the united states from 1947 through 2010 – data analysis and comparison to the literature. U.S. Geological Survey Scientific Investigations Report. Reston, United States: USGS. [Google Scholar]
  14. Daigle, H., Bangs, N.L., & Dugan, B. (2011). Transient hydraulic fracturing and gas release in methane hydrate settings: A case study from southern Hydrate Ridge. Geochemistry, Geophysics, Geosystems, 12 (12). https://doi.org/10.1029/2011gc003841 [Google Scholar]
  15. Konno, Y., Jin, Y., Yoneda, J., Uchiumi, T., Shinjou, K., & Nagao, J. (2016). Hydraulic fracturing in methane-hydrate-bearing sand. RSC Advances, 6(77), 73148–73155. https://doi.org/10.1039/c6ra15520k [CrossRef] [Google Scholar]
  16. Jing, L. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics & Mining Sciences, 40(3), 283–353. https://doi.org/10.1016/s1365-1609(03)00013-3 [CrossRef] [Google Scholar]
  17. Lei, Q., Latham, J-P., & Tsang, C-F. (2017). The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics, (85), 151–176. https://doi.org/10.1016/j.compgeo.2016.12.024 [CrossRef] [Google Scholar]
  18. FLAC3D. (2008). Fast lagrangian analysis of continua in 3 Dimensions. Itasca Consulting Group, Inc. Version 3.10. [Google Scholar]
  19. Zhou, L. (2012). 3D modeling of hydraulic fracturing in tight gas reservoirs by using of flac3d and validation through comparison with FracPro. Advanced Materials Research, (524-527), 1293–1299. https://doi.org/10.4028/www.scientific.net/AMR.524-527.1293 [CrossRef] [Google Scholar]
  20. Aki, K., & Richards, P.G. (2002). Quantitative seismology (2 ed.). Sausalito, California: University Science Books. [Google Scholar]
  21. Hubbert, M.K., & Willis, D.G. (1957). Mechanics of hydraulic fracturing. Transactions of the AIME, 210(01), 153–168. https://doi.org/10.2118/686-g [CrossRef] [Google Scholar]
  22. Min, K.-B., Rutqvist, J., Tsang, C.-F., & Jing, L. (2004). Stress-dependent permeability of fractured rock masses: A numerical study. International Journal of Rock Mechanics and Mining Sciences, 41(7), 1191–1210. https://doi.org/10.1016/j.ijrmms.2004.05.005 [CrossRef] [Google Scholar]
  23. Nazimko, V.V., Saleev, I.A., Iliashov, M.O., & Zakharova, L.M. (2020). Microseismic structure evolution due to variation of liquid injection rate (07-04). 5th International Itasca Symposium. Billaux, Hazzard, Nelson & Schöpfer (eds.). Paper: 07–04. Vienna, Austria: Itasca International, Inc., Minneapolis. [Google Scholar]
  24. Cundall, P.A., & Strack, O.D.L. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1),47–65. https://doi.org/10.1680/geot.1979.29.1.47 [CrossRef] [Google Scholar]
  25. Wang, J. (2009). Modern thermodynamics – New concepts based on the second law of thermodynamics. Progress in Natural Science, 19(1), 125–135. https://doi.org/10.1016/j.pnsc.2008.07.002 [CrossRef] [Google Scholar]
  26. Sicking, C., Vermilye, J., Geiser, P., Lacazette, A., & Thompson, L. (2013). Fracture Imaging and Permeability Fairway Mapping. Search and Discovery Article, 41150. [Google Scholar]
  27. Parotidis, M. (2005). Evidence for triggering of the Vogtland swarms 2000 by pore pressure diffusion. Journal of Geophysical Research, 110 (B5). https://doi.org/10.1029/2004jb003267 [CrossRef] [Google Scholar]
  28. Nicolis, G., & Prigogine, I. (1971). Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations. New York, United States:Wiley. [Google Scholar]
  29. Nazimko, V., & Zakharova, L. (2017). Cluster behavior of the ground during its irreversible movement. Acta geodynamica et geomaterialia, 14(188), 45–49. [Google Scholar]
  30. Nazimko, V.V., Peng, S.S., Lapteev, A.A., Alexandrov, S.N., & Sazhnev, V.P. (1997). Damage mechanics around a tunnel due to incremental ground pressure. International Journal of Rock Mechanics and Mining Sciences, 34(3-4), 222.e1–222.e14. https://doi.org/10.1016/s1365-1609(97)00245-1 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.