Open Access
Issue
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01018
Number of page(s) 9
DOI https://doi.org/10.1051/e3sconf/202123001018
Published online 18 January 2021
  1. Padron, T., & Craig, S.H. (2018). Past and present coiled tubing string failures – history and recent new failures mechanisms. Society of Petroleum Engineers – SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition 2018. https://doi.org/10.2118/189914-MS [Google Scholar]
  2. Myatt, J., Lynn, S., Craig, S., Murphy, S., Correa, P., & Padron, T. (2015). Challenging conventional fluid practices for coiled tubing drilling. Society of Petroleum Engineers – Coiled Tubing and Well Intervention Conference and Exhibition 2015, 317–330. https://doi.org/10.2118/173661-MS [Google Scholar]
  3. Zhou, Z., Tan, J., Wan, F., & Peng, B. (2019). Improvement and determination of the influencing factors of coiled tubing fatigue life prediction. Advances in Mechanical Engineering, 11 (9),168781401988013. https://doi.org/10.1177/1687814019880131 [CrossRef] [Google Scholar]
  4. Sherman, S., Majko, S. M., & Otto, J. (2020). High strength coiled tubing – how is fatigue life affected by slip damage? Society of Petroleum Engineers – SPE/ICoTA Well Intervention Conference and Exhibition 2020. https://doi.org/10.2118/199859-MS [Google Scholar]
  5. Wei, X, Dong, J., Chen, N., Yadav, A.P., Ren, Q., Wei, J., & Ke, W. (2021). Effects of bentonite content on the corrosion evolution of low carbon steel in simulated geological disposal environment. Journal of Materials Science & Technology, (66), 46–56. https://doi.org/10.1016/j.jmst.2020.04.071 [CrossRef] [Google Scholar]
  6. Zhao, W., Xiao, J., Saiood, H.A., Otaibi, A.B., Huang, J., & Chang, F.F. (2020). Chemical solution to ESP packer penetrator corrosion problem. International Petroleum Technology Conference. https://doi.org/10.2523/iptc-19633-abstract [Google Scholar]
  7. Li, L., Shen, Z.X., & Wang, P. (2013). Research the coiled tubing deformation under internal pressure and cyclic bending. Applied Mechanics and Materials, (421), 62–65. https://doi.org/10.4028/www.scientific.net/amm.421.62 [CrossRef] [Google Scholar]
  8. Akid, R., Dmytrakh, I.M., & Gonzalez-Sanchez, J. (2006). Fatigue damage accumulation: The role of corrosion on the early stages of crack development. Corrosion Engineering Science and Technology, 41(4), 328–335. https://doi.org/10.1179/174327806X139108 [CrossRef] [Google Scholar]
  9. Syrotyuk, А.M., & Dmytrakh, I.M. (2014). Methods for the evaluation of fracture and strength of pipeline steels and structures under the action of working media. Part І. influence of the corrosion factor. Materials Science, 50(3), 324–339. https://doi.org/10.1007/s11003-014-9724-5 [CrossRef] [Google Scholar]
  10. Ziaja, J., Stryczek, S., & Jamrozik, A. (2017). Sealing slurries limiting natural gas exhalations from the annular space of a wellbore [Zaczyny uszczelniajaące ograniczajaące eltshalacje gazu ziemnego z przestrzeni pierścieniowej otworu wiertniczego]. Przemysl Chemiczny, 96(5), 990–992. https://doi.org/10.15199/62.2017.5.9 [Google Scholar]
  11. Syrotyuk, А., Vytyaz, О., & Ziaja, J. (2017). Damage to flexible pipes of coiled tubing equipment due to corrosion and fatigue: methods and approaches for evaluation. Mining of Mineral Deposits, 11(4), 96–103. https://doi.org/10.15407/mining11.04.096 [CrossRef] [Google Scholar]
  12. Duque, L.H., Guimarães, Z., Berry, S.L., & Gouveia, M. (2008). Coiled tubing and nitrogen generation unit operations: Corrosion challenges and solutions found in brazil offshore operations. Society of Petroleum Engineers – Coiled Tubing and Well Intervention Conference and Exhibition 2008, 240–254. https://doi.org/10.2118/113719-MS [Google Scholar]
  13. Ziaja, J., Jamrozik, A., & Wiśniowski, R. (2019). Modified drilling fluids for workover jobs in oil wells. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, 19(1-2), 1017–1024. https://doi.org/10.5593/sgem2019/1.2/S06.129 [Google Scholar]
  14. Hagianu, A., Nae, I., Ionescu, G.C., & Ripeanu, R. G. (2020). Research on mechanical and geometrical characteristics of materials used for flexible tubing production. IOP Conference Series: Materials Science and Engineering, (724), 012004. https://doi.org/10.1088/1757-899X/724/1/012004 [CrossRef] [Google Scholar]
  15. Ghiasi, H. (2018). Evaluation of microstructural effects on mechanical properties of CT80 grade coiled tubing steel. Scientia Iranica, 25(4), 2155–2161. https://doi.org/10.24200/sci.2018.20677 [Google Scholar]
  16. Zhou, L., Jiang, B., Li, M., Yuan, F., Zhang, C., & Liu, Y. (2014). Microstructure control of non-quenched and tempered ct80 grade coiled tubing steel. Acta Metallurgica Sinica (English Letters), 27(3), 464–468. https://doi.org/10.1007/s40195-014-0063-1 [CrossRef] [Google Scholar]
  17. Dmytrakh, I.M., Smiyan, O.D., & Syrotyuk, A.M. (2010). Experimental study of fatigue crack growth in pipeline steel under hydrogenating conditions. 18th European Conference on Fracture: Fracture of Materials and Structures from Micro to Macro Scale. [Google Scholar]
  18. Poberezhny, L., Hrysanchuk, A., & Grytsuliak, H. (2019). Influence of the gas hydrates on the corrosion rate of gas gathering pipelines. Procedia Structural Integrity, (16), 141–147. https://doi.org/10.1016/j.prostr.2019.07.033 [CrossRef] [Google Scholar]
  19. Hua, Y., Barker, R., & Neville, A. (2014). Effect of temperature on the critical water content for general and localised corrosion of X65 carbon steel in the transport of supercritical CO2. International Journal of Greenhouse Gas Control, (31), 48–60. https://doi.org/10.1016/j.ijggc.2014.09.026 [CrossRef] [Google Scholar]
  20. Abdulridha, A.A., Allah, M.A.A.H., Makki S.Q. et al. (2020) Corrosion inhibition of carbon steel in 1 M H2SO4 using new Azo Schiff compound: Electrochemical, gravimetric, adsorption, surface and DFT studies. Journal of Molecular Liquids, 315, 113690, https://doi.org/10.1016/j.ijggc.2014.09.026 [CrossRef] [Google Scholar]
  21. Krueger, S., & Schoenborn, K. (2020). New high temperature coiled tubing drilling bottom hole assembly enables slimhole re-entry drilling in challenging high temperature wells. Society of Petroleum Engineers – SPE/ICoTA Well Intervention Conference and Exhibition 2020. https://doi.org/10.2118/199842-MS [Google Scholar]
  22. Saeed, A., Hamid, S., Yakovlev, T., Sagr, H., & Harthi, S. (2020). Worldwide first successful production logging of tri-lateral high temperature coiled tubing drilled sour gas well, performed in a single run using innovative reentrance system without whipstock guides. Society of Petroleum Engineers – SPE/ICoTA Well Intervention Conference and Exhibition 2020. https://doi.org/10.2118/199872-MS [Google Scholar]
  23. Al-Nakhli, A., Arifin, M., & Ahmed, D. (2019). Novel application of distributed temperature sensing and CT real-time downhole flow measurement tool for thermochemical treatments. International Petroleum Technology Conference 2019. https://doi.org/10.2523/19307-MS [Google Scholar]
  24. Newman, K., Kelleher, P., & Gunby, B. (2017). Optimizing CT material properties for extended reach operations. Society of Petroleum Engineers – SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition 2017. https://doi.org/10.2118/184749-MS [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.