Open Access
Issue
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01019
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202123001019
Published online 18 January 2021
  1. Jianzhou Li, Lijun Guan, Yonghai Gao, & Baojiang Sun. (2012). Prediction method of gas hydrates under condition of different productions in well testing of deep water gas well. Well Test, 21(2), 17–19. https://doi.org/10.1016/j.petlm.2016.06.004 [Google Scholar]
  2. Bondarenko, V., Kovalevs’ka, I., & Ganushevych, K. (2014). Progressive technologies of coal, coalbed methane, and ores mining. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b17547 [CrossRef] [Google Scholar]
  3. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b19901 [CrossRef] [Google Scholar]
  4. Shukai Jin, Chong Zhang, Wenbo Meng, Yi Yu, Fabin Xu, & Zhao Dong (2015). Gas hydrate risk and preventative measures for drilling and completion operations in LS 17-2 deep water gas field. China Offshore Oil Gas, 27(4), 93–101. [Google Scholar]
  5. Kujawa, T., Nowak, W., & Stachel, A.A. (2006). Utilization of existing deep geological wells for acquisitions of geothermal energy. Energy, 31(5), 650–664. https://doi.org/10.1016/j.energy.2005.05.002 [CrossRef] [Google Scholar]
  6. Angrisani, G., Diglio, G., Sasso, M., Calise, F., & Dentice d’Accadia, M. (2016). Design of a novel geothermal heating and cooling system. Energy Conversion and Management, (108), 144–159. https://doi.org/10.1016/j.enconman.2015.11.001 [CrossRef] [Google Scholar]
  7. Alkhasov, A.B., & Alkhasova, D.A. (2018). Heat exchangers for utilization of the heat of high-temperature geothermal brines. Thermal Engineering, 65(3), 155–159. https://doi.org/10.1134/S0040601518030035 [CrossRef] [Google Scholar]
  8. Katipot Inkong, Hari Prakash Veluswamy, Pramoch Rangsunvigit, Santi Kulprathipanja, & Praveen Lingand. (2019). Innovative approach to enhance the methane hydrate formation at near ambient temperature and moderate pressure for gas storage applications. Industrial & Engineering Chemistry Research, Just Accepted Manuscript. https://doi.org/10.1021/acs.iecr.9b04498 [Google Scholar]
  9. Hao, Y., Li, X., Shuxia, Li, Lu, G., Liu, Y., & Wei, X. (2018). Heat conduction and thermal convection on thermal front movement during natural gas hydrate thermal stimulation exploitation. IFP Energies Nouvelles, 73 (40). https://doi.org/10.2516/ogst/2018046 [Google Scholar]
  10. Ingrid Azevedode Oliveira, Iuri Soter Viana Segtovich, Amaro Gomes Barreto Jr., Frederico Wanderley Tavares. (2017). Accurate thermodynamic description of vapor-liquid and solid-liquid equilibria of THF, water and gas hydrates with a unique set of parameters. The Journal of Chemical Thermodynamics, (117), 60–67. https://doi.org/10.1016/j.jct.2017.08.003 [CrossRef] [Google Scholar]
  11. Zhenhao, D., Ding, L., Yali, C., & Rui, S. (2011). The influence of temperature, pressure, salinity and capillary force on the formation of methane hydrate. Geosciences Frontiers 2011, (2), 125–135. https://doi.org/10.1016/j.gsf.2011.03.009 [Google Scholar]
  12. Shagapov, V.S., Khasanov, M.K., & Musakaev, N.G. (2008). Formation of a gas hydrates due to injection of a cold gas into a porous reservoir partly saturated by water. Journal of Applied Mechanics and Technical Physics, (49), 462–472. https://doi.org/10.1007/s10808-008-0062-y [CrossRef] [Google Scholar]
  13. Yanli Guo, Baojiang Sun, Keke Zhaob, & Hongkun Zhang. (2016). A prediction method of natural gas hydrate formation in deepwater gas well and its application. Petroleum, 2(3), 296–300. https://doi.org/10.1016/j.petlm.2016.06.004 [CrossRef] [Google Scholar]
  14. Zhi Zhong, Siyan Liu, Timothy R. Carrc, Ali Takbiri-Borujeni, Mohammad Kazemie, & Qinwen Fub. (2019). Numerical simulation of water-alternating-gas process for optimizing EOR and carbon storage. Energy Procedia, (158), 6079–6086. https://doi.org/10.1016/j.egypro.2019.01.507 [CrossRef] [Google Scholar]
  15. Bondarenko, V., Kovalevska, I., Astafiev, D., & Malova, O. (2018). Examination of phase transition of mine methane to gas hydrates and their sudden failure – Percy Bridgman’s effect. Solid State Phenomena, (277), 137–146. https://doi.org/10.4028/www.scientific.net/SSP.277.137 [CrossRef] [Google Scholar]
  16. Bondarenko, V., Svietkina, O., & Sai, K. (2018). Effect of mechanoactivated chemical additives on the process of gas hydrate formation. Eastern-European Journal of Enterprise Technologies, 1 (6(91)),17–26. https://doi.org/10.15587/1729-4061.2018.123885 [CrossRef] [Google Scholar]
  17. Maksymova, E., Ovchynnikov, M., Lysenko, R., & Kostrytska, S. (2018). Physical and chemical methods of methane utilization in Ukrainian coal mines. Solid State Phenomena, (277), 147–156. https://doi.org/10.4028/www.scientific.net/SSP.277.147 [CrossRef] [Google Scholar]
  18. Dreus, A.Yu., Bondarenko, V.I., Biletskyi, V.S., & Lysenko, R.S. (2020). Mathematical simulation of heat and mass exchange processes during dissociation of gas hydrates in a porous medium. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 5 (179). https://doi.org/10.33271/nvngu/2020-5/033 [Google Scholar]
  19. Bondarenko, V., Svietkina, O., Lysenko, R., & Liu, B. (2020). Methane gas hydrates influence on sudden coal and gas outbursts during underground mining of coal deposits. E3S Web of Conferences, (201), 01002. https://doi.org/10.1051/e3sconf/202020101002 [CrossRef] [EDP Sciences] [Google Scholar]
  20. Bondarenko, V., & Sai, K. (2018). Process pattern of heterogeneous gas hydrate deposits dissociation. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (2), 21–28. https://doi.org/10.29202/nvngu/2018-2/4 [CrossRef] [Google Scholar]
  21. Kelland, M.A., Svartaas, T.M., & Dybvik, L. (1995). A new generation of gas hydrate inhibitors. Society of Petroleum Engineers, 529. https://doi.org/10.2118/30695-MS [Google Scholar]
  22. Gallagher, K.S., Grübler, A., Kuhl, L., Nemet, G., & Wilson, C. (2012). The energy technology innovation system. Annual Review of Environment and Resources, (37), 137–162. [CrossRef] [Google Scholar]
  23. Alimonti, C., & Soldo, E. (2016). Study of geothermal power generation from a very deep oil well with a wellbore heat exchanger. Renewable Energy, (86), 292–301. https://doi.org/10.1016/j.renene.2015.08.031 [CrossRef] [Google Scholar]
  24. Alimonti, C., Soldo, E., Bocchetti, D., & Berardi, D. (2018). The wellbore heat exchangers: A technical review. Renewable Energy, (123), 353–381. https://doi.org/10.1016/j.renene.2018.02.055 [CrossRef] [Google Scholar]
  25. Asif, M., Yao, J., Fan D., Bongole, K., Liu J., & Zhang, X. (2019). Potential for heat production by retrofitting abandoned gas wells into geothermal wells. PLoS ONE, 14 (8),e0220128. https://doi.org/10.1371/journal.pone.0220128 [CrossRef] [Google Scholar]
  26. Chen, C., Shao, H., Naumov, D., Kong, Y., Tu, K., & Kolditz, O. (2019). Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating. Chen et al. Geotherm Energy, (7). https://doi.org/10.1186/s40517–019–0133–8 [CrossRef] [Google Scholar]
  27. Fyk, M., Biletskyi, V., Ryshchenko, I., & Abbood, M. (2019). Improving the geometric topology of geothermal heat exchangers in oil bore-holes. E3S Web of Conferences, (123), 01023. https://doi.org/10.1051/e3sconf/201912301023 [CrossRef] [EDP Sciences] [Google Scholar]
  28. Fyk, M., Fyk, I., Biletsky, V., Oliynyk, M., Kovalchuk, Yu., Hnieushev, V., & Shapchenko, Yu. (2018). Theoretical and applied aspects of using a thermal pump effect in gas pipeline systems. Eastern-European Journal of Enterprise Technologies, 1 (8(91)),39–48. https://doi.org/10.15587/1729–4061.2018.121667 [CrossRef] [Google Scholar]
  29. Azin, R., Sedaghati, H., Fatehi, R., Osfouri, S., & Sakhaei, Z. (2019). Production assessment of low production rate of well in a supergiant gas condensate reservoir: application of an integrated strategy. Journal of Petroleum Exploration and Production Technology, (9), 543–560. https://doi.org/10.1007/s13202–018–0491–y [CrossRef] [Google Scholar]
  30. Fyk, M., Biletskyi, V., & Abbud, M. (2018). Resource evaluation of geothermal power plant under the conditions of carboniferous deposits usage in the Dnipro-Donetsk depression. E3S Web of Conferences, (60), 00006. https://doi.org/10.1051/e3sconf/20186000006 [CrossRef] [EDP Sciences] [Google Scholar]
  31. Fyk, M., Biletskyi, V., Fyk, I., Bondarenko, V., & Al-Sultan, M. (2019). Improvement of an engineering procedure for calculating the non-isothermal transportation of a gas-liquid mixture. Eastern-European Journal of Enterprise Technologies, 3 (5(99)),51–60. https://doi.org/10.15587/1729–4061.2019.167198 [CrossRef] [Google Scholar]
  32. Ganguly, S. (2018). Exact solution of heat transport equation for a heterogeneous geothermal reservoir. Energies, 11 (11),2935. https://doi.org/10.3390/en11112935 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.