Open Access
Issue
E3S Web of Conf.
Volume 230, 2021
IV International Scientific and Technical Conference “Gas Hydrate Technologies: Global Trends, Challenges and Horizons” (GHT 2020)
Article Number 01023
Number of page(s) 10
DOI https://doi.org/10.1051/e3sconf/202123001023
Published online 18 January 2021
  1. Von Thaden Ugalde, H.A., Robles, C., & Fuente Carrasco, M.E. (2020). Mining activity in the 20th century in the oaxaca valley: Today’s public health risks. Revista Internacional de Contaminacion Ambiental, 36(1), 165–175. [CrossRef] [Google Scholar]
  2. Hilson, G., & Murck, B. (2000). Sustainable development in the mining industry: Clarifying the corporate perspective. Resources Policy, 26(4), 227–238. https://doi.org/10.1016/S0301-4207(00)00041-6 [CrossRef] [Google Scholar]
  3. Lei, Y., Cui, N., & Pan, D. (2013). Economic and social effects analysis of mineral development in China and policy implications. Resources Policy, 38(4), 448–457. https://doi.org/10.1016/j.resourpol.2013.06.005 [CrossRef] [Google Scholar]
  4. Wellmer, F.W., & Hennig, W. (2003). Aspects for formulating mineral resources management policies. Erzmetall: Journal for Exploration, Mining and Metallurgy, 56(1), 3–10. [Google Scholar]
  5. Jønsson, J.B., & Bryceson, D.F. (2017). Beyond the artisanal mining site: migration, housing capital accumulation and indirect urbanization in East Africa. Journal of Eastern African Studies, 11(1), 3–23. https://doi.org/10.1080/17531055.2017.1287245 [CrossRef] [Google Scholar]
  6. Kasmaee, S., & Tinti, F. (2018). A method to evaluate the impact of urbanization on ground temperature evolution at a regional scale. Rudarsko Geolosko Naftni Zbornik, 33(5), 1–12. https://doi.org/10.17794/rgn.2018.5.1 [CrossRef] [Google Scholar]
  7. Zhou, A., Hu, J., & Wang, K. (2020). Carbon emission assessment and control measures for coal mining in China. Environmental Earth Sciences, 79 (19),461. https://doi.org/10.1007/s12665-020-09189-8 [CrossRef] [Google Scholar]
  8. Sahu, H.B., & Tibrewal, K. (2018). Greenhouse gas inventory for mines: An urge to develop clean technology. Journal of Mines, Metals and Fuels, 66(8), 526–530. [Google Scholar]
  9. Kalybekov, T., Rysbekov, K., Sandibekov, M., Bi, Y.L., & Toktarov, A. (2020). Substantiation of the intensified dump reclamation in the process of field development. Mining of Mineral Deposits, 14(2), 59–65. https://doi.org/10.33271/mining14.02.059 [CrossRef] [Google Scholar]
  10. Bosak, P., Popovych, V., Stepova, K., & Dudyn, R. Environmental impact and toxicological properties of mine dumps of the Lviv-Volyn Coal basin. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 2(440), 48–54. [Google Scholar]
  11. Malanchuk, Z., Moshynskyi, V., Malanchuk, V., Korniienko, Y., & Koziar, M. (2020). Results of research into the content of rare earth materials in man-made phosphogypsum deposits. Key Engineering Materials, (844), 77–87. https://doi.org/10.4028/www.scientific.net/kem.844.77 [CrossRef] [Google Scholar]
  12. Moshynskyi, V., Malanchuk, Z., Tsymbaliuk, V., Malanchuk, L., Zhomyruk, R., & Vasylchuk, O. (2020). Research into the process of storage and recycling technogenic phosphogypsum placers. Mining of Mineral Deposits, 14(2), 95–102. https://doi.org/10.33271/mining14.02.095 [CrossRef] [Google Scholar]
  13. Fan, L., & Xu, J. (2020). Authority – enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry. Energy Policy, (147), 111828. https://doi.org/10.1016/j.enpol.2020.111828 [CrossRef] [Google Scholar]
  14. Li, S., Zheng, H., Su, Y., Zhao, Y., & He, T. (2020). Effect of fluid field on the eco-friendly utilization and recycling of CO2 and dyes in the waterless dyeing. Journal of CO2 Utilization, (42), 101311. https://doi.org/10.1016/j.jcou.2020.101311 [CrossRef] [Google Scholar]
  15. Song, C. (2006). Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 115(1-4), 2–32. https://doi.org/10.1016/j.cattod.2006.02.029 [CrossRef] [Google Scholar]
  16. Hunt, A.J., Sin, E.H.K., Marriott, R., & Clark, J.H. (2010). Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem, 3(3), 306–322. https://doi.org/10.1002/cssc.200900169 [CrossRef] [PubMed] [Google Scholar]
  17. Sobolev, V., Cabana, E.C., Howaniec, N., Dychkovskyi, R., Jura, B., Bąk, A., & Smoliński, A. (2020). Estimation of dense plasma temperature formed under shock wave cumulation. Materials, 13 (21),4923. https://doi.org/10.3390/ma13214923 [CrossRef] [Google Scholar]
  18. Medunić, G., Mondol, D., Rađenović, A., & Nazir, S. (2018) Review of the latest research on coal, environment, and clean technologies. Rudarsko Geolosko Naftni Zbornik, 33(3), 13–21. https://doi.org/10.17794/rgn.2018.3.2 [CrossRef] [Google Scholar]
  19. Bondarenko, V., Lozynskyi, V., Sai, K., & Anikushyna, K. (2015). An overview and prospectives of practical application of the biomass gasification technology in Ukraine. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 27–32. https://doi.org/10.1201/b19901-6 [CrossRef] [Google Scholar]
  20. Sobczyk, E.J., Kaczmarek, J., Fijorek, K., & Kopacz, M. (2020) Efficiency and financial standing of coal mining enterprises in Poland in terms of restructuring course and effects. Gospodarka Surowcami Mineralnymi, 36 (2),127–152 https://doi.org/10.24425/gsm.2020.132565 [Google Scholar]
  21. Smil, V. (2015). A new world of energy. The Cambridge World History, 7(1), 164–184. [CrossRef] [Google Scholar]
  22. Buzylo, V., Pavlychenko, A., Savelieva, T., & Borysovska, O. (2018). Ecological aspects of managing the stressed-deformed state of the mountain massif during the development of multiple coal layers. E3S Web of Conferences, (60), 00013. https://doi.org/10.1051/e3sconf/20186000013 [CrossRef] [EDP Sciences] [Google Scholar]
  23. Dychkovskyi, R., Shavarskyi, Ia., Saik, P., Lozynskyi, V., Falshtynskyi, V., & Cabana, E. (2020). Research into stress-strain state of the rock mass condition in the process of the operation of double-unit longwalls. Mining of Mineral Deposits, 14(2), 85–94. https://doi.org/10.33271/mining14.02.085 [CrossRef] [Google Scholar]
  24. Falshtynskyi, V., Lozynskyi, V., Saik, P., Dychkovskyi, R., & Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Mining of Mineral Deposits, 10(1), 16–24. https://doi.org/10.15407/mining10.01.016 [CrossRef] [Google Scholar]
  25. Pivnyak, G., Razumny, Y., & Zaika, V. (2009). The problems of power supply and power saving in the mining industry of Ukraine. Archives of Mining Sciences, (54), 5–12. [Google Scholar]
  26. Małkowski, P., Niedbalski, Z., & Hydzik-Wiśniewska, J. (2013). The change of structural and thermal properties of rocks exposed to high temperatures in the vicinity of designed geo-reactor. Archives of Mining Sciences, 58(2), 465–480. https://doi:10.2478/amsc-2013-0031 [CrossRef] [Google Scholar]
  27. Bondarenko, V., Tabachenko, M., & Wachowicz, J. (2010). Possibility of production complex of sufficient gasses in Ukraine. New Techniques and Technologies in Mining, 113–119. https://doi.org/10.1201/b11329-19 [CrossRef] [Google Scholar]
  28. Nikolsky, V. (2020). A study of heat exchange processes within the channels of disk pulse devices. Energies, 13 (13),3492. https://doi.org/10.3390/en13133492 [CrossRef] [Google Scholar]
  29. Bondarenko, V., Svietkina, O., & Sai, K. (2017). Study of the formation mechanism of gas hydrates of methane in the presence of surface-active substances. Eastern-European Journal of Enterprise Technologies, 5 (6(89)),48–55. https://doi.org/10.15587/1729-4061.2017.112313 [CrossRef] [Google Scholar]
  30. Dychkovskyi, R., Shavarskyi, J., Cabana, E.C., & Smoliński, A. (2019). Characteristic of possible obtained products during the well underground coal gasification. Solid State Phenomena, (291), 52–62. https://doi.org/10.4028/www.scientific.net/ssp.291.52 [CrossRef] [Google Scholar]
  31. Ovchynnikov, M., Ganushevych, K., & Sai, K. (2013). Methodology of gas hydrates formation from gaseous mixtures of various compositions. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 203–205. https://doi.org/10.1201/b16354-37 [Google Scholar]
  32. Małkowski, P., Niedbalski, Z., Majcherczyk, T., & Bednarek, Ł. (2020). Underground monitoring as the best way of roadways support design validation in a long time period. Mining of Mineral Deposits, 14(3), 1–14. https://doi.org/10.33271/mining14.03.001 [CrossRef] [Google Scholar]
  33. Maldynova, A., Osmanov, Z., & Galiyev, D. (2018). Formation of marketing strategy for promoting an innovative product. Journal of Applied Economic Sciences, 13(7), 1951–1958. [Google Scholar]
  34. Sribna, Y., Trokhymets, O., Nosatov, I., & Kriukova, I. (2019). The globalization of the world coal market – contradictions and trends. E3S Web of Conferences, (123), 01044. https://doi.org/10.1051/e3sconf/201912301044 [CrossRef] [EDP Sciences] [Google Scholar]
  35. Mustakhimov, A., & Zeynullin, A. (2020). Scaled-up laboratory research into dry magnetic separation of the Zhezdinsky concentrating mill tailings. Mining of Mineral Deposits, 14(3), 71–77. https://doi.org/10.33271/mining14.03.071 [CrossRef] [Google Scholar]
  36. Dychkovskyi, R.O. (2015). Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 37–42. [Google Scholar]
  37. Caceres, E., & Alca, J.J. (2016). Rural electrification using gasification technology: Experiences and perspectives. IEEE Latin America Transactions, 14(7), 3322–3328. https://doi.org/10.1109/tla.2016.7587637 [CrossRef] [Google Scholar]
  38. Caceres, E., & Alca, J.J. (2016). Potential for energy recovery from a wastewater treatment plant. IEEE Latin America Transactions, 14(7), 3316–3321. https://doi.org/10.1109/tla.2016.7587636 [CrossRef] [Google Scholar]
  39. Bondarenko, V., & Dychkovskiy, R. (2006). Methods of extraction of thin and rather thin coal seams in the works of the scientists of the underground mining faculty (National Mining Uuniversity). New Technological Solutions in Underground Mining International Mining Forum, 21–25. https://doi.org/10.1201/noe0415401173.ch3 [Google Scholar]
  40. Sobolev, V. (2020). Reasons for breaking of chemical bonds of gas molecules during movement of explosion products in cracks formed in rock mass. International Journal of Mining Science and Technology, 30(2), 265–269. https://doi.org/10.1016/j.ijmst.2020.01.002 [Google Scholar]
  41. Falshtyns’kyy, V., Dychkovs’kyy, R., Lozyns’kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 125–132. https://doi.org/10.1201/b16354-22 [Google Scholar]
  42. Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30–36. [Google Scholar]
  43. Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60–66. [Google Scholar]
  44. Falshtynskyi, V.S. (2013). Determination of the technological parameters of borehole underground coal gasification for thin coal seams. Journal of Sustainable Mining, 12(3), 8–16. https://doi:10.7424/jsm130302 [CrossRef] [Google Scholar]
  45. Gorova, A., Pavlychenko, A., & Borysovs’ka, O. (2013). The study of ecological state of waste disposal areas of energy and mining companies. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 169–172. https://doi.org/10.1201/b16354-29 [Google Scholar]
  46. Dryzhenko, A., Moldabayev, S., Shustov, A., Adamchuk, A., & Sarybayev, N. (2017). Open pit mining technology of steeply dipping mineral occurences by steeply inclined sublayers. SGEM, 17(13), 599–606. https://doi.org/10.5593/sgem2017/13/s03.076 [Google Scholar]
  47. Malanchuk, Z., Malanchuk, Y., Korniyenko, V., & Ignatyuk, I. (2017). Examining features of the process of heavy metals distribution in technogenic placers at hydraulic mining. Eastern-European Journal of Enterprise Technologies, 1 (10(85)),45–51. https://doi.org/10.15587/1729-4061.2017.92638 [CrossRef] [Google Scholar]
  48. Pivnyak, G., Dychkovskyi, R., Bobyliov, O., Cabana, E.C., & Smoliński, A. (2018). Mathematical and geomechanical model in physical and chemical processes of underground coal gasification. Solid State Phenomena, (277), 1–16. https://doi.org/10.4028/www.scientific.net/ssp.277.1 [CrossRef] [Google Scholar]
  49. Griadushchiy, Y., Korz, P., Koval, O., & Bondarenko, V. (2007). Advanced experience and direction of mining of thin coal seams in ukraine. International Mining Forum, 2–7. https://doi:10.1201/noe0415436700.ch1 [Google Scholar]
  50. Golovchenko, A., Dychkovskyi, R., Pazynich, Y., Edgar, C.C., Howaniec, N., Jura, B., & Smolinski, A. (2020). Some aspects of the control for the radial distribution of burden material and gas flow in the blast furnace. Energies, 13 (4),923. https://doi.org/10.3390/en13040923 [CrossRef] [Google Scholar]
  51. Kolb, A., Pazynich, Y., Mirek, A., & Petinova, O. (2020). Influence of voltage reserve on the parameters of parallel power active compensators in mining. E3S Web of Conferences, (201), 01024. https://doi.org/10.1051/e3sconf/202020101024 [CrossRef] [EDP Sciences] [Google Scholar]
  52. Pivnyak, G. (2020). Conditions of suitability of coal seams for underground coal gasification. Key Engineering Materials, (844), 38–48. https://doi.org/10.4028/www.scientific.net/kem.844.38 [CrossRef] [Google Scholar]
  53. Sarycheva, L. (2003). Using GMDH in ecological and socio-economical monitoring problems. Systems Analysis Modelling Simulation 2003, 43(10), 1409–1414. https://doi.org/10.1080/02329290290024925 [CrossRef] [Google Scholar]
  54. Falshtynskyi, V., Saik, P., Lozynskyi, V., Dychkovskyi, R., & Petlovanyi, M. (2018). Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 12(2), 68–75. https://doi.org/10.15407/mining12.02.068 [CrossRef] [Google Scholar]
  55. Krupnik, L., Yelemessov, K., Beisenov, B., & Baskanbayeva, D. (2020). Substantiation and process design to manufacture polymer-concrete transfer cases for mining machines. Mining of Mineral Deposits, 14(2), 103–109. https://doi.org/10.33271/mining14.02.103 [CrossRef] [Google Scholar]
  56. Baskanbayeva, D. (2018). Studying fiberreinforced concrete for casting housing parts of pumps. Eastern-European Journal of Enterprise Technologies, 6 (12(96)),22–27. https://doi.org/10.15587/1729-4061.2018.151038 [Google Scholar]
  57. Yelemessov, K., Krupnik, L., Bortebayev, S., Beisenov, B., Baskanbayeva, D., & Igbayeva, A. (2020). Polymer concrete and fibre concrete as efficient materials for manufacture of gear cases and pumps. E3S Web of Conferences, (168), 00018. https://doi.org/10.1051/e3sconf/202016800018 [CrossRef] [EDP Sciences] [Google Scholar]
  58. Beshta, O.S. (2012). Electric drives adjustment for improvement of energy efficiency of technological processes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 98–107. [Google Scholar]
  59. Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 36–42. [Google Scholar]
  60. Gornostayev, S.S., Crocket, J.H., Mochalov, A.G., & Laajoki, K.V.O. (1999). The platinum-group minerals of the Baimka placer deposits, Aluchin horst, Russian Far East. Canadian Mineralogist, 37(5), 1117–1129. [Google Scholar]
  61. Dychkovskyi, R.O., Avdiushchenko, A.S., Falshtynskyi, V.S., & Saik, P.B. (2013). On the issue of estimation of the coal mine extraction area economic efficiency. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 107–114. [Google Scholar]
  62. Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2012). Ecological problems of post-industrial mining areas. Geomechanical Processes During Underground Mining, 35–40. https://doi:10.1201/b13157-7 [Google Scholar]
  63. Vlasova, E., Кovalenko, V., Kotok, V., & Vlasov, S. (2016). Research of the mechanism of formation and properties of tripolyphosphate coating on the steel basis. Eastern-European Journal of Enterprise Technologies, 5 (5(83)),33–39. https://doi.org/10.15587/1729-4061.2016.79559 [CrossRef] [Google Scholar]
  64. Dychkovskyi, R., Vladyko, O., Maltsev, D., & Cabana, E.C. (2018). Some aspects of the compatibility of mineral mining technologies. Rudarsko-Geološko-Naftni Zbornik, 33(4), 73–82. https://doi.org/10.17794/rgn.2018.4.7 [CrossRef] [Google Scholar]
  65. Su, C., & Hu, Z. (2017). Reliability assessment for Chinese domestic wind turbines based on data mining techniques. Wind Energy, 21(3), 198–209. https://doi:10.1002/we.2155 [CrossRef] [Google Scholar]
  66. Sai, K., Malanchuk, Z., Petlovanyi, M., Saik, P., & Lozynskyi, V. (2019). Research of Thermodynamic Conditions for Gas Hydrates Formation from Methane in the Coal Mines. Solid State Phenomena, (291), 155–172. https://doi.org/10.4028/www.scientific.net/SSP.291.155 [CrossRef] [Google Scholar]
  67. Golovchenko, A., Pazynich, Y., & Potempa, M. (2018). Automated monitoring of physical processes of formation of burden material surface and gas flow in blast furnace. Solid State Phenomena, (277), 54–65. https://doi.org/10.4028/www.scientific.net/ssp.277.54 [CrossRef] [Google Scholar]
  68. Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016). Experimental study of the influence of crossing the disjunctive geological faults on thermal regime of underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 21–29. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.