Open Access
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 01027
Number of page(s) 6
Section NESEE2020-New Energy Science and Environmental Engineering
Published online 27 January 2021
  1. S. Kimura, O. Aoki, Y. Kitahara, E. Aiyoshizawa, Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards, SAE Transactions, 110 (2001) 239-246. [Google Scholar]
  2. S.M. Palash, M.A. Kalam, H.H. Masjuki, B.M. Masum, I.M. Rizwanul Fattah, M. Mofijur, Impacts of biodiesel combustion on NOx emissions and their reduction approaches, Renewable and Sustainable Energy Reviews, 23 (2013) 473-490. [CrossRef] [Google Scholar]
  3. Y. Ju, J.K. Lefkowitz, C.B. Reuter, S.H. Won, X. Yang, S. Yang, W. Sun, Z. Jiang, Q. Chen, Plasma Assisted Low Temperature Combustion, Plasma Chemistry and Plasma Processing, 36 (2016) 85-105. [CrossRef] [Google Scholar]
  4. N.A. Popov, Kinetics of plasma-assisted combustion: effect of non-equilibrium excitation on the ignition and oxidation of combustible mixtures, Plasma Sources Science and Technology, 25 (2016) 043002. [CrossRef] [Google Scholar]
  5. L.S. Jacobsen, C.D. Carter, R.A. Baurle, T.A. Jackson, S. Williams, D. Bivolaru, S. Kuo, J. Barnett, C.-J. Tam, Plasma-Assisted Ignition in Scramjets, Journal of Propulsion and Power, 24 (2008) 641-654. [CrossRef] [Google Scholar]
  6. S. Huang, Y. Wu, H. Song, J. Zhu, Z. Zhang, X. Song, Y. Li, Experimental investigation of multichannel plasma igniter in a supersonic model combustor, Experimental Thermal and Fluid Science, 99 (2018) 315-323. [Google Scholar]
  7. S.M. Starikovskaia, Plasma assisted ignition and combustion, Journal Of Physics D-Applied Physics, 39 (2006) R265-R299. [NASA ADS] [CrossRef] [Google Scholar]
  8. B. Lin, Y. Wu, Z. Zhang, D. Bian, D. Jin, Ignition enhancement of lean propane/air mixture by multichannel discharge plasma under low pressure, Applied Thermal Engineering, 148 (2019) 1171-1182. [Google Scholar]
  9. A.Y. Starikovskii, Plasma supported combustion, Proceedings of the Combustion Institute, 30 (2005) 2405-2417. [CrossRef] [Google Scholar]
  10. Y.G. Ju, W.T. Sun, Plasma assisted combustion: Dynamics and chemistry, Prog. Energy Combust. Sci., 48 (2015) 21-83. [Google Scholar]
  11. C.S. Kalra, A.F. Gutsol, A.A. Fridman, Gliding arc discharges as a source of intermediate plasma for methane partial oxidation, IEEE transactions on plasma science, 33 (2005) 32-41. [CrossRef] [Google Scholar]
  12. Fridman, S. Nester, L.A. Kennedy, A. Saveliev, O. Mutaf-Yardimci, Gliding arc gas discharge, Prog. Energy Combust. Sci., 25 (1999) 211-231. [Google Scholar]
  13. J. Zhu, A. Ehn, J. Gao, C. Kong, M. Aldén, M. Salewski, F. Leipold, Y. Kusano, Z. Li, Translational, rotational, vibrational and electron temperatures of a gliding arc discharge, Opt. Express, 25 (2017) 20243-20257. [CrossRef] [PubMed] [Google Scholar]
  14. T. Paulmier, L. Fulcheri, Use of non-thermal plasma for hydrocarbon reforming, Chemical Engineering Journal, 106 (2005) 59-71. [CrossRef] [Google Scholar]
  15. F. Song, Y. Wu, S. Xu, D. Jin, M. Jia, N-decane decomposition by microsecond pulsed DBD plasma in a flow reactor, International Journal of Hydrogen Energy, 44 (2019) 3569-3579. [Google Scholar]
  16. B.X. Lin, Y. Wu, Y.F. Zhu, F.L. Song, D.L. Bian, Experimental investigation of gliding arc plasma fuel injector for ignition and extinction performance improvement, Appl. Energy, 235 (2019) 1017-1026. [Google Scholar]
  17. S. Leonov, D. Yarantsev, A. Napartovich, I. Kochetov, Plasma-Assisted Ignition and Flameholding in High-Speed Flow, in: 44th AIAA Aerospace Sciences Meeting and Exhibit. [Google Scholar]
  18. S. Leonov, A. Houpt, S. Elliott, B. Hedlund, Ethylene Ignition and Flameholding by Electrical Discharge in Supersonic Combustor, Journal of Propulsion and Power, 34 (2017) 499-509. [CrossRef] [Google Scholar]
  19. S.B. Leonov, D.A. Yarantsev, Plasma-induced ignition and plasma-assisted combustion in high-speed flow, Plasma Sources Science and Technology, 16 (2006) 132-138. [CrossRef] [Google Scholar]
  20. T. Ombrello, X. Qin, Y. Ju, A. Gutsol, A. Fridman, C. Carter, Combustion Enhancement via Stabilized Piecewise Nonequilibrium Gliding Arc Plasma Discharge, AIAA Journal, 44 (2006) 142-150. [CrossRef] [Google Scholar]
  21. J. Gao, C. Kong, J. Zhu, A. Ehn, T. Hurtig, Y. Tang, S. Chen, M. Aldén, Z. Li, Visualization of instantaneous structure and dynamics of large-scale turbulent flames stabilized by a gliding arc discharge, Proceedings of the Combustion Institute, 37 (2019) 5629-5636. [CrossRef] [Google Scholar]
  22. A.V. Surov, S.D. Popov, V.E. Popov, D.I. Subbotin, E.O. Serba, V.A. Spodobin, G.V. Nakonechny, A.V. Pavlov, Multi-gas AC plasma torches for gasification of organic substances, Fuel, 203 (2017) 1007-1014. [CrossRef] [Google Scholar]
  23. L. Fulcheri, F. Fabry, S. Takali, V. Rohani, Three-Phase AC Arc Plasma Systems: A Review, Plasma Chemistry and Plasma Processing, 35 (2015) 565-585. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.