Open Access
Issue
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 01064
Number of page(s) 6
Section NESEE2020-New Energy Science and Environmental Engineering
DOI https://doi.org/10.1051/e3sconf/202123301064
Published online 27 January 2021
  1. Mansoor M M, Marston J O, Vakarelski I U, et al. Water entry without surface seal: extended cavity formation [J]. Journal of Fluid Mechanics, 2014, 743: 295-326. [Google Scholar]
  2. Truscott T T, Epps B P, Belden J. Water entry of projectiles [J]. Annual review of fluid mechanics, 2014, 46: 355-378. [Google Scholar]
  3. Eristoff J M, Truscott T T, Techet A H, et al. The water entry of decelerating spheres [J]. Physics of fluids, 2010, 22(3): 032102. [CrossRef] [Google Scholar]
  4. Wei Z, Hu C. An experimental study on water entry of horizontal cylinders [J]. Journal of Marine Science and Technology, 2014, 19(3): 338-350. [CrossRef] [Google Scholar]
  5. Worthington A. M, Cole R S. Impact with a Liquid Surface Studied by the Aid of Instantaneous Photography. Paper II [J]. Philosophical Transactions of the Royal Society of London, 1900, 194:175-199. [Google Scholar]
  6. Mallock A. Sounds Produced by Drops Falling on Water [J]. Proceedings of the Royal Society of London, 1918, 95(667):138-143. [Google Scholar]
  7. Bell G E. On the impact of a solid sphere with a fluid surface [J]. Phil. Mag. J. Sci, 1924, 48: 753-765. [CrossRef] [Google Scholar]
  8. May A. Effect of surface condition of a sphere on its water-entry cavity [J]. Journal of Applied Physics, 1951, 22(10): 1219-1222. [Google Scholar]
  9. May A. Water entry and the cavity-running behavior of missiles[R]. Navsea Hydroballistics Advisory Committee Silver Spring Md, 1975. [Google Scholar]
  10. May A, Hoover W R. A study of the water-entry cavity[R]. NAVAL ORDNANCE LAB WHITE OAK MD, 1963. [Google Scholar]
  11. Abelson H I. Pressure measurements in the water-entry cavity [J]. Journal of Fluid Mechanics, 1970, 44(1): 129-144. [Google Scholar]
  12. Abelson H I. A prediction of water-entry cavity shape [J]. Journal of Basic Engineering, 1971, 93(4): 501-503. [CrossRef] [Google Scholar]
  13. Glasheen J W, Mcmahon T A. Vertical water entry of disks at low Froude numbers[J]. Physics of Fluids, 1996, 8(8): 2078-2083. [CrossRef] [Google Scholar]
  14. Yan H, Liu Y, Kominiarczuk J, et al. Cavity dynamics in water entry at low Froude numbers[J]. Journal of Fluid Mechanics, 2009: 441-461. [Google Scholar]
  15. Fan C, Li Z, Du M, et al. Experimental study on different behaviors of spheres entering water and PEO solution[J]. Marine Georesources & Geotechnology, 2020: 1-11. [CrossRef] [Google Scholar]
  16. Duclaux V, Caille F, Duez C, et al. Dynamics of transient cavities [J]. Journal of Fluid Mechanics, 2007, 591: 1-19. [Google Scholar]
  17. Yao E, Wang H, Pan L, et al. Vertical water-entry of bullet-shaped projectiles[J]. Journal of Applied Mathematics and Physics, 2014, 02(6): 323-334. [CrossRef] [Google Scholar]
  18. Guo Z, Zhang W, Xiao X, et al. An investigation into horizontal water entry behaviors of projectiles with different nose shapes[J]. International Journal of Impact Engineering, 2012: 43-60. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.