Open Access
Issue
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 01131
Number of page(s) 6
Section NESEE2020-New Energy Science and Environmental Engineering
DOI https://doi.org/10.1051/e3sconf/202123301131
Published online 27 January 2021
  1. A.C. Mcelroy, M.R. Hyman, and D.R.U. Knappe, 1,4-Dioxane in drinking water: emerging for 40 years and still unregulated. Current Opinion in Environmental Science & Health. 7: p. 117-125 (2019) [Google Scholar]
  2. A. Broughton, et al., 1,4-Dioxane: Emerging technologies for an emerging contaminant. Remediation. 29(4): p. 49-63 (2019) [CrossRef] [Google Scholar]
  3. M.G. Antoniou and H.R. Andersen, Comparison of UVC/S2O8(2-) with UVC/H2O2 in terms of efficiency and cost for the removal of micropollutants from groundwater. Chemosphere. 119 Suppl: p. S81-8 (2015) [PubMed] [Google Scholar]
  4. B.J. Martijn, et al., Impact of IX-UF Pretreatment on the Feasibility of UV/H2O2Treatment for Degradation of NDMA and 1,4-Dioxane. Ozone: Science & Engineering. 32(6): p. 383-390 (2010) [Google Scholar]
  5. H.M. Coleman, et al., Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes. J Hazard Mater. 146(3): p. 496-501 (2007) [Google Scholar]
  6. L. Zhao, et al., Degradation of 1,4-dioxane in water with heat- and Fe(2+)-activated persulfate oxidation. Environ Sci Pollut Res Int. 21(12): p. 7457-65 (2014) [CrossRef] [PubMed] [Google Scholar]
  7. N. Kishimoto and H. Nishimura, Effect of pH and molar ratio of pollutant to oxidant on a photochemical advanced oxidation process using hypochlorite. Environ Technol. 36(19): p. 2436-42 (2015) [Google Scholar]
  8. Z. Zhang, et al., Pilot-scale evaluation of oxidant speciation, 1,4-dioxane degradation and disinfection byproduct formation during UV/hydrogen peroxide, UV/free chlorine and UV/chloramines advanced oxidation process treatment for potable reuse. Water Res. 164: p. 114939 (2019) [CrossRef] [PubMed] [Google Scholar]
  9. S. Patton, et al., Impact of the Ultraviolet Photolysis of Monochloramine on 1,4-Dioxane Removal: New Insights into Potable Water Reuse. Environmental Science & Technology Letters. 4(1): p. 26-30 (2016) [Google Scholar]
  10. S. Chitra, et al., Degradation of 1,4-dioxane using advanced oxidation processes. Environ Sci Pollut Res Int. 19(3): p. 871-8 (2012) [CrossRef] [PubMed] [Google Scholar]
  11. A. Safarzadeh-Amiri, J.R. Bolton, and S.R. Cater, Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Research. 31(4): p. 787-798 (1997) [Google Scholar]
  12. W. Shen, et al., Kinetics and operational parameters for 1,4-dioxane degradation by the photoelectro-peroxone process. Chem. Eng. J. 310: p. 249-258 (2017) [Google Scholar]
  13. C.S. Lee, et al., Impact of groundwater quality and associated byproduct formation during UV/hydrogen peroxide treatment of 1,4-dioxane. Water Res. 173: p. 115534 (2020) [CrossRef] [PubMed] [Google Scholar]
  14. X. Xu, et al., Light-driven breakdown of 1,4-Dioxane for potable reuse: A review. Chem. Eng. J. 373: p. 508-518 (2019) [Google Scholar]
  15. S.K. Bhargava, et al., Wet Oxidation and Catalytic Wet Oxidation. Ind. Eng. Chem. Res. 45(4): p. 1221-1258 (2006) [Google Scholar]
  16. F. Arena, et al., Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorganica Chimica Acta. 431: p. 101-109 (2015) [Google Scholar]
  17. M.J. Dietrich, T.L. Randall, and P.J. Canney, Wet air oxidation of hazardous organics in wastewater. Environmental Progress. 4(3): p. 171-177 (1985) [CrossRef] [Google Scholar]
  18. Sushma, M. Kumari, and A.K. Saroha, Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. J. Environ. Manage. 228: p. 169-188 (2018) [PubMed] [Google Scholar]
  19. A. Ananth, et al., Copper oxide nanomaterials: Synthesis, characterization and structure-specific antibacterial performance. Chem. Eng. J. 262: p. 179-188 (2015) [Google Scholar]
  20. S. Anandan, G.J. Lee, and J.J. Wu, Sonochemical synthesis of CuO nanostructures with different morphology. Ultrason. Sonochem. 19(3): p. 682-6 (2012) [CrossRef] [PubMed] [Google Scholar]
  21. L.-J. Zhou, et al., Facile synthesis of highly stable and porous Cu2O/CuO cubes with enhanced gas sensing properties. Sensors Actuators B: Chem. 188: p. 533-539 (2013) [CrossRef] [Google Scholar]
  22. G. Scaratti, et al., Treatment of aqueous solutions of 1,4-dioxane by ozonation and catalytic ozonation with copper oxide (CuO). Environ. Technol.: p. 1-13 (2018) [PubMed] [Google Scholar]
  23. W. Chen, et al., Effective mineralization of Diclofenac by catalytic ozonation using Fe-MCM-41 catalyst. Chem. Eng. J. 304: p. 594-601 (2016) [Google Scholar]
  24. Y. Huang, et al., Heterogeneous catalytic ozonation of dibutyl phthalate in aqueous solution in the presence of iron-loaded activated carbon. Chemosphere. 119: p. 295-301 (2015) [PubMed] [Google Scholar]
  25. M. Ahmadi, et al., Catalytic ozonation of high saline petrochemical wastewater using PAC@Fe II Fe 2 III O 4 : Optimization, mechanisms and biodegradability studies. Sep. Purif. Technol. 177: p. 293-303 (2017) [Google Scholar]
  26. D. Ranjbar Vakilabadi, et al., Catalytic potential of Cu/Mg/Al-chitosan for ozonation of real landfill leachate. Process Saf. Environ. Prot. 107: p. 227-237 (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.