Open Access
Issue
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 02005
Number of page(s) 8
Section BFS2020-Biotechnology and Food Science
DOI https://doi.org/10.1051/e3sconf/202123302005
Published online 27 January 2021
  1. Etheridge ML, Choi J, Ramadhyani S, Bischof JC. Methods for Characterizing Convective Cryoprobe Heat Transfer in Ultrasound Gel Phantoms. J Biomech Eng-T Asme. 2013;135(2). [CrossRef] [Google Scholar]
  2. Maiwand MO, Asimakopoulos G. Cryosurgery for lung cancer: Clinical results and technical aspects. Technol Cancer Res T. 2004;3(2):143-150. [CrossRef] [Google Scholar]
  3. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71-78. [Google Scholar]
  4. Qian BZ, Pollard JW. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell. 2010;141(1):39-51. [CrossRef] [PubMed] [Google Scholar]
  5. Sabel MS. Cryo-immunology: A review of the literature and proposed mechanisms for stimulatory versus suppressive immune responses. Cryobiology. 2009;58(1):1-11. [CrossRef] [PubMed] [Google Scholar]
  6. Sharma A, Moore WH, Lanuti M, Shepard JAO. How I Do It Radiofrequency Ablation and Cryoablation of Lung Tumors. J Thorac Imag. 2011;26(2):162-174. [CrossRef] [Google Scholar]
  7. Robinson JW, Saliken JC, Donnelly BJ, Barnes P, Guyn L. Quality-of-life outcomes for men treated with cryosurgery for localized prostate carcinoma. Cancer. 1999;86(9):1793-1801. [CrossRef] [PubMed] [Google Scholar]
  8. Baust JG, Gage AA. Progress toward optimization of cryosurgery. Technol Cancer Res T. 2004;3(2):95-101. [CrossRef] [Google Scholar]
  9. Weld KJ, Landman J. Comparison of cryoablation, radiofrequency ablation and high-intensity focused ultrasound for treating small renal tumours. Bju Int. 2005;96(9):1224-1229. [CrossRef] [PubMed] [Google Scholar]
  10. Rubinsky B. Cryosurgery. Annu Rev Biomed Eng. 2000;2:157-187. [CrossRef] [PubMed] [Google Scholar]
  11. Cooper SM. The history of cryosurgery. J Roy Soc Med. 2001;94(4):196-201. [CrossRef] [Google Scholar]
  12. Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology. 1998;37(3):171-186. [CrossRef] [PubMed] [Google Scholar]
  13. Hoffmann NE, Bischof JC. The cryobiology of cryosurgical injury. Urology. 2002;60(2a):40-49. [Google Scholar]
  14. Zhang YT, Liu J. Numerical study on three-region thawing problem during cryosurgical re-warming. Med Eng Phys. 2002;24(4):265-277. [CrossRef] [PubMed] [Google Scholar]
  15. Gage AA, Baust JG. Cryosurgery - A review of recent advances and current issues. Cryoletters. 2002;23(2):69-78. [Google Scholar]
  16. Baust JG, Gage AA. The molecular basis of cryosurgery. Bju Int. 2005;95(9):1187-1191. [CrossRef] [PubMed] [Google Scholar]
  17. Zhang X, Hossain SMC, Zhao G, Qiu BS, He XM. Two-phase heat transfer model for multiprobe cryosurgery. Appl Therm Eng. 2017;113:47-57. [Google Scholar]
  18. Zhao G, He LQ, Wang PT, Ding WP, Xie XJ, Liu Z, et al. Determination of cell volume during equilibrium freezing process. Chinese Sci Bull. 2003;48(15):1551-1554. [CrossRef] [Google Scholar]
  19. Hoffmann NE, Bischof JC. Cryosurgery of normal and tumor tissue in the dorsal skin flap chamber: Part I - Thermal response. J Biomech Eng-T Asme. 2001;123(4):301-309. [CrossRef] [Google Scholar]
  20. Jiang J, Goel R, Schmechel S, Vercellotti G, Forster C, Bischof J. Pre-conditioning cryosurgery: Cellular and molecular mechanisms and dynamics of TNF-alpha enhanced cryotherapy in an in vivo prostate cancer model system. Cryobiology. 2010;61(3):280-288. [CrossRef] [PubMed] [Google Scholar]
  21. Aus G. Current status of HIFU and cryotherapy in prostate cancer - A review. Eur Urol. 2006;50(5):927-934. [CrossRef] [PubMed] [Google Scholar]
  22. Baust JG, Gage AA, Klossner D, Clarke D, Miller R, Cohen J, et al. Issues critical to the successful application of cryosurgical ablation of the prostate. Technol Cancer Res T. 2007;6(2):97-109. [CrossRef] [Google Scholar]
  23. Wang Z, Zhao G, Wang T, Yu QF, Su MY, He XM. Three-dimensional numerical simulation of the effects of fractal vascular trees on tissue temperature and intracelluar ice formation during combined cancer therapy of cryosurgery and hyperthermia. Appl Therm Eng. 2015;90:296-304. [Google Scholar]
  24. Mochnacki B, Majchrzak E. Numerical model of thermal interactions between cylindrical cryoprobe and biological tissue using the dual-phase lag equation. International Journal Of Heat And Mass Transfer. 2017;108:1-10. [Google Scholar]
  25. Kengne E, Lakhssassi A. Bioheat transfer problem for one-dimensional spherical biological tissues. Math Biosci. 2015;269:1-9. [Google Scholar]
  26. Ng EYK, Tan HM, Ooi EH. Boundary element method with bioheat equation for skin burn injury. Burns. 2009;35(7):987-997. [CrossRef] [PubMed] [Google Scholar]
  27. Xu F, Wang PF, Lin M, Lu TJ, Ng EYK. Quantification and the Underlying Mechanism of Skin Thermal Damage: A Review. J Mech Med Biol. 2010;10(3):373-400. [Google Scholar]
  28. Paruch M. Hyperthermia process control induced by the electric field in order to destroy cancer. Acta Bioeng Biomech. 2014;16(4):123-130. [PubMed] [Google Scholar]
  29. Yu QF, Yi JR, Zhao G, Zhang YT. Effect of Vascular Network and Nanoparticles on Heat Transfer and Intracellular Ice Formation in Tumor Tissues during Cryosurgery. Cryoletters. 2014;35(2):95-100. [Google Scholar]
  30. Lillicrap T, Tahtali M, Neely A, Wang XF, Bivard A, Lueck C. A model based on the Pennes bioheat transfer equation is valid in normal brain tissue but not brain tissue suffering focal ischaemia. Australas Phys Eng S. 2017;40(4):841-850. [CrossRef] [Google Scholar]
  31. Malek A, Abbasi G. Optimal Control for Pennes’ Bioheat Equation. Asian J Control. 2016;18(2):674-685. [Google Scholar]
  32. Dombrovsky LA, Nenarokomova NB, Tsiganov DI, Zeigarnik YA. Modeling of repeating freezing of biological tissues and analysis of possible microwave monitoring of local regions of thawing. International Journal of Heat and Mass Transfer. 2015;89:894-902. [Google Scholar]
  33. Chua KJ, Chou SK. On the study of the freeze-thaw thermal process of a biological system. Appl Therm Eng. 2009;29(17-18):3696-3709. [Google Scholar]
  34. Shi J, Chen ZQ, Shi MH. Simulation of heat transfer of biological tissue during cryosurgery based on vascular trees. Appl Therm Eng. 2009;29(8-9):1792-1798. [Google Scholar]
  35. R.G. Keanini, B. Rubinsky, Optimization of multiprobe cryosurgery, J. Heat Transfer-Trans. Asme 114 (4) (1992) 796-801. [CrossRef] [Google Scholar]
  36. Baissalov R, Sandison GA, Donnelly BJ, Saliken JC, McKinnon JG, Muldrew K, et al. A semi-empirical treatment planning model for optimization of multiprobe cryosurgery. Phys Med Biol. 2000;45(5):1085-1098. [CrossRef] [PubMed] [Google Scholar]
  37. Rossi MR, Rabin Y. Experimental verification of numerical simulations of cryosurgery with application to computerized planning. Phys Med Biol. 2007;52(15):4553-4567. [CrossRef] [PubMed] [Google Scholar]
  38. Zhang AL, Luo XD, Chen C, He LQ, Xu LX. Numerical simulation of tissue freezing by liquid nitrogen based cryoprobe. Cryoletters. 2006;27(4):243-252. [Google Scholar]
  39. He ZZ, Liu J. An efficient thermal evolution model for cryoablation with arbitrary multi-cryoprobe configuration. Cryobiology. 2015;71(2):318-328. [CrossRef] [PubMed] [Google Scholar]
  40. Baust JM, Robilotto A, Snyder KK, Santucci K, Stewart J, Van Buskirk R, et al. Assessment of Cryosurgical Device Performance Using a 3D Tissue-Engineered Cancer Model. Technol Cancer Res T. 2017;16(6):900-909. [CrossRef] [Google Scholar]
  41. Zheng YC, Wu JH, He ZZ, Huang SJ. Computational study of the effects of arterial bifurcation on the temperature distribution during cryosurgery. Biomed Eng Online. 2018;17. [Google Scholar]
  42. Schweikert RJ, Keanini RG. A finite element and order of magnitude analysis of cryosurgery in the lung. Int Commun Heat Mass. 1999;26(1):1-12. [CrossRef] [Google Scholar]
  43. Young JL, Kolla SB, Pick DL, Sountoulides P, Kaufmann OG, Ortiz-Vanderdys CG, et al. In Vitro, Ex Vivo and In Vivo Isotherms for Renal Cryotherapy. J Urology. 2010;183(2):752-758. [CrossRef] [Google Scholar]
  44. Blezek DJ, Carlson DG, Cheng LT, Christensen JA, Callstrom MR, Erickson BJ. Cell Accelerated Cryoablation Simulation. Comput Meth Prog Bio. 2010;98(3):241-252. [CrossRef] [Google Scholar]
  45. Magalov Z, Shitzer A, Degani D. Isothermal volume contours generated in a freezing gel by embedded cryo-needles with applications to cryo-surgery. Cryobiology. 2007;55(2):127-137. [CrossRef] [PubMed] [Google Scholar]
  46. Widyaparaga A, Kuwamoto M, Sakoda N, Kohno M, Takata Y. Theoretical and Experimental Study of a Flexible Wiretype Joule-Thomson Microrefrigerator for Use in Cryosurgery. J Heat Trans-T Asme. 2012;134(2). [CrossRef] [Google Scholar]
  47. Liu Jing. Principles of cryogenic biomedical engineering[M]. Beijing: Science and Technology Press, 2007, 1-60. [Google Scholar]
  48. Chen Yongcheng. The application of Israeli cryosurgery system in tumor treatment[J]. Medical Equipment, 2008, 21: 18-21. [Google Scholar]
  49. Xu Kecheng, Niu Lizhi. Tumor Cryotherapy [M]. Shanghai: Shanghai Science and Technology Education Press, 2007, 1-25. [Google Scholar]
  50. Etheridge ML, Choi J, Ramadhyani S, Bischof JC. Methods for Characterizing Convective Cryoprobe Heat Transfer in Ultrasound Gel Phantoms. J Biomech Eng-T Asme. 2013;135(2) [CrossRef] [Google Scholar]
  51. Liu Jing, Ren Zepei, Wang Cuncheng. Research progress in biomedical heat transfer. Advances in Mechanics, 1996, 26C2): 198-213 [Google Scholar]
  52. Zhang Jie, Hua Zezhao. Two factors affecting the freezing process of biological tissues. Journal of Refrigeration, 1999, 4:43-48 [Google Scholar]
  53. Zhang Ronghan. Tissue destruction mechanism of cryosurgery (review). Refrigeration, 1989, 3:35-38 [Google Scholar]
  54. Hu Yinping, Tong Mingwei. Numerical simulation of temperature field and stress field in the freezing process of in vitro biological tissues. 2007:1-75 [Google Scholar]
  55. Sha Bin, Yuan Xiuqian. The processing method of boundary conditions when numerically solving the human body’s biological heat equation. Journal of Beijing University of Aeronautics and Astronautics, 1992, 2:46-50 [Google Scholar]
  56. Gage AA, Baust J. Mechanisms of tissue injury in cryosurgery. Cryobiology. 1998;37(3):171-86 [CrossRef] [PubMed] [Google Scholar]
  57. Rewcastle JC, Sandison GA, Hahn LJ, Saliken JC, McKinnon JG, Donnelly BJ. A model for the time-dependent thermal distribution within an iceball surrounding a cryoprobe. Phys Med Biol. 1998;43(12):3519-34. [CrossRef] [PubMed] [Google Scholar]
  58. Wang Z, Zhao G, Wang T, Yu QF, Su MY, He XM. Three-dimensional numerical simulation of the effects of fractal vascular trees on tissue temperature and intracelluar ice formation during combined cancer therapy of cryosurgery and hyperthermia. Appl Therm Eng. 2015; 90:296-304. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.