Open Access
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 02004
Number of page(s) 9
Section BFS2020-Biotechnology and Food Science
Published online 27 January 2021
  1. Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096, doi:10.1126/science.1258096 (2014). [Google Scholar]
  2. Li, H. et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct Target Ther 5, 1, doi:10.1038/s41392-019-0089-y (2020). [CrossRef] [PubMed] [Google Scholar]
  3. Rudin, N., Sugarman, E. & Haber, J. E. Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122, 519-534 (1989). [CrossRef] [PubMed] [Google Scholar]
  4. Cannan, W. J. & Pederson, D. S. Mechanisms and Consequences of Double-Strand DNA Break Formation in Chromatin. J Cell Physiol 231, 3-14, doi:10.1002/jcp.25048 (2016). [Google Scholar]
  5. Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262-1278, doi:10.1016/j.cell.2014.05.010 (2014). [CrossRef] [PubMed] [Google Scholar]
  6. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21, 289-297, doi:10.1128/MCB.21.1.289-297.2001 (2001). [CrossRef] [PubMed] [Google Scholar]
  7. Haber, J. E. A Life Investigating Pathways That Repair Broken Chromosomes. Annu Rev Genet 50, 1-28, doi:10.1146/annurev-genet-120215-035043 (2016). [CrossRef] [PubMed] [Google Scholar]
  8. Yeh, C. D., Richardson, C. D. & Corn, J. E. Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 21, 1468-1478, doi:10.1038/s41556-019-0425-z (2019). [CrossRef] [PubMed] [Google Scholar]
  9. Lander, E. S. The Heroes of CRISPR. Cell 164, 18-28, doi:10.1016/j.cell.2015.12.041 (2016). [CrossRef] [PubMed] [Google Scholar]
  10. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11, 636-646, doi:10.1038/nrg2842 (2010). [CrossRef] [PubMed] [Google Scholar]
  11. Buck-Koehntop, B. A. et al. Molecular basis for recognition of methylated and specific DNA sequences by the zinc finger protein Kaiso. Proc Natl Acad Sci U S A 109, 15229-15234, doi:10.1073/pnas.1213726109 (2012). [CrossRef] [PubMed] [Google Scholar]
  12. Carroll, D. Genome engineering with zinc-finger nucleases. Genetics 188, 773-782, doi:10.1534/genetics.111.131433 (2011). [CrossRef] [PubMed] [Google Scholar]
  13. Miller, J. C. et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29, 143-148, doi:10.1038/nbt.1755 (2011). [CrossRef] [PubMed] [Google Scholar]
  14. Li, T. et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39, 359-372, doi:10.1093/nar/gkq704 (2011). [CrossRef] [PubMed] [Google Scholar]
  15. Juillerat, A. et al. Comprehensive analysis of the specificity of transcription activator-like effector nucleases. Nucleic Acids Res 42, 5390-5402, doi:10.1093/nar/gku155 (2014). [CrossRef] [PubMed] [Google Scholar]
  16. Sander, J. D. et al. Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nat Methods 8, 67-69, doi:10.1038/nmeth.1542 (2011). [CrossRef] [PubMed] [Google Scholar]
  17. Maeder, M. L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell 31, 294-301, doi:10.1016/j.molcel.2008.06.016 (2008). [CrossRef] [PubMed] [Google Scholar]
  18. Ishino, Y., Shinagawa, H., Makino, K., Amemura, M. & Nakata, A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433, doi:10.1128/jb.169.12.5429-5433.1987 (1987). [CrossRef] [PubMed] [Google Scholar]
  19. Mojica, F. J., Diez-Villasenor, C., Soria, E. & Juez, G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36, 244-246, doi:10.1046/j.1365-2958.2000.01838.x (2000). [CrossRef] [PubMed] [Google Scholar]
  20. Kunin, V., Sorek, R. & Hugenholtz, P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8, R61, doi:10.1186/gb-2007-8-4-r61 (2007). [Google Scholar]
  21. Jansen, R., Embden, J. D., Gaastra, W. & Schouls, L. M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43, 1565-1575, doi:10.1046/j.1365-2958.2002.02839.x (2002). [CrossRef] [PubMed] [Google Scholar]
  22. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821, doi:10.1126/science.1225829 (2012). [Google Scholar]
  23. Bolotin, A., Quinquis, B., Sorokin, A. & Ehrlich, S. D. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551-2561, doi:10.1099/mic.0.28048-0 (2005). [CrossRef] [PubMed] [Google Scholar]
  24. Barrangou, R. & Marraffini, L. A. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell 54, 234-244, doi:10.1016/j.molcel.2014.03.011 (2014). [CrossRef] [PubMed] [Google Scholar]
  25. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826, doi:10.1126/science.1232033 (2013). [Google Scholar]
  26. Gaj, T., Gersbach, C. A. & Barbas, C. F., 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31, 397-405, doi:10.1016/j.tibtech.2013.04.004 (2013). [CrossRef] [PubMed] [Google Scholar]
  27. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31, 233-239, doi:10.1038/nbt.2508 (2013). [CrossRef] [PubMed] [Google Scholar]
  28. Nunez, J. K. et al. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity. Nat Struct Mol Biol 21, 528-534, doi:10.1038/nsmb.2820 (2014). [CrossRef] [PubMed] [Google Scholar]
  29. Chylinski, K., Le Rhun, A. & Charpentier, E. The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10, 726-737, doi:10.4161/rna.24321 (2013). [Google Scholar]
  30. Karvelis, T. et al. crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10, 841-851, doi:10.4161/rna.24203 (2013). [Google Scholar]
  31. Wiedenheft, B. et al. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477, 486-489, doi:10.1038/nature10402 (2011). [PubMed] [Google Scholar]
  32. Gleditzsch, D. et al. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. RNA Biol 16, 504-517, doi:10.1080/15476286.2018.1504546 (2019). [Google Scholar]
  33. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109, E2579-2586, doi:10.1073/pnas.1208507109 (2012). [CrossRef] [PubMed] [Google Scholar]
  34. Knott, G. J. & Doudna, J. A. CRISPR-Cas guides the future of genetic engineering. Science 361, 866-869, doi:10.1126/science.aat5011 (2018). [Google Scholar]
  35. Terns, M. P. & Terns, R. M. CRISPR-based adaptive immune systems. Curr Opin Microbiol 14, 321-327, doi:10.1016/j.mib.2011.03.005 (2011). [CrossRef] [PubMed] [Google Scholar]
  36. Song, M., Kim, Y. H., Kim, J. S. & Kim, H. Genome engineering in human cells. Methods Enzymol 546, 93-118, doi:10.1016/B978-0-12-801185-0.00005-2 (2014). [Google Scholar]
  37. Jasin, M. & Rothstein, R. Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol 5, a012740, doi:10.1101/cshperspect.a012740 (2013). [Google Scholar]
  38. Kim, Y. G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93, 1156-1160, doi:10.1073/pnas.93.3.1156 (1996). [CrossRef] [PubMed] [Google Scholar]
  39. Szczepek, M. et al. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25, 786-793, doi:10.1038/nbt1317 (2007). [CrossRef] [PubMed] [Google Scholar]
  40. Jiang, F. & Doudna, J. A. CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys 46, 505-529, doi:10.1146/annurev-biophys-062215-010822 (2017). [CrossRef] [PubMed] [Google Scholar]
  41. Wiedenheft, B. et al. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci U S A 108, 10092-10097, doi:10.1073/pnas.1102716108 (2011). [CrossRef] [PubMed] [Google Scholar]
  42. Mojica, F. J. M., Diez-Villasenor, C., Garcia-Martinez, J. & Almendros, C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155, 733-740, doi:10.1099/mic.0.023960-0 (2009). [CrossRef] [PubMed] [Google Scholar]
  43. Marraffini, L. A. & Sontheimer, E. J. Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463, 568-571, doi:10.1038/nature08703 (2010). [PubMed] [Google Scholar]
  44. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods 10, 1116-1121, doi:10.1038/nmeth.2681 (2013). [CrossRef] [PubMed] [Google Scholar]
  45. Fonfara, I. et al. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42, 2577-2590, doi:10.1093/nar/gkt1074 (2014). [CrossRef] [PubMed] [Google Scholar]
  46. Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 343, 1247997, doi:10.1126/science.1247997 (2014). [Google Scholar]
  47. Nishimasu, H. et al. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156, 935-949, doi:10.1016/j.cell.2014.02.001 (2014). [CrossRef] [PubMed] [Google Scholar]
  48. Palella, F. J., Jr. et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 338, 853-860, doi:10.1056/NEJM199803263381301 (1998). [Google Scholar]
  49. Gandhi, R. T. et al. The effect of raltegravir intensification on low-level residual viremia in HIV-infected patients on antiretroviral therapy: a randomized controlled trial. PLoS Med 7, doi:10.1371/journal.pmed.1000321 (2010). [Google Scholar]
  50. Finzi, D. et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 278, 1295-1300, doi:10.1126/science.278.5341.1295 (1997). [Google Scholar]
  51. Chun, T. W. et al. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 387, 183-188, doi:10.1038/387183a0 (1997). [PubMed] [Google Scholar]
  52. Mougel, M., Houzet, L. & Darlix, J. L. When is it time for reverse transcription to start and go? Retrovirology 6, 24, doi:10.1186/1742-4690-6-24 (2009). [CrossRef] [PubMed] [Google Scholar]
  53. Wong, J. K. et al. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278, 1291-1295, doi:10.1126/science.278.5341.1291 (1997). [Google Scholar]
  54. Siliciano, J. D. et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. Nat Med 9, 727-728, doi:10.1038/nm880 (2003). [CrossRef] [PubMed] [Google Scholar]
  55. Hermankova, M. et al. Analysis of human immunodeficiency virus type 1 gene expression in latently infected resting CD4+ T lymphocytes in vivo. J Virol 77, 7383-7392, doi:10.1128/jvi.77.13.7383-7392.2003 (2003). [CrossRef] [PubMed] [Google Scholar]
  56. Kaminski, R. et al. Elimination of HIV-1 Genomes from Human T-lymphoid Cells by CRISPR/Cas9 Gene Editing. Sci Rep 6, 22555, doi:10.1038/srep22555 (2016). [CrossRef] [PubMed] [Google Scholar]
  57. Ebina, H., Misawa, N., Kanemura, Y. & Koyanagi, Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci Rep 3, 2510, doi:10.1038/srep02510 (2013). [CrossRef] [PubMed] [Google Scholar]
  58. Craigie, R. & Bushman, F. D. HIV DNA integration. Cold Spring Harb Perspect Med 2, a006890, doi:10.1101/cshperspect.a006890 (2012). [Google Scholar]
  59. Liao, H. K. et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 6, 6413, doi:10.1038/ncomms7413 (2015). [Google Scholar]
  60. O’Neil, P. K. et al. Mutational analysis of HIV-1 long terminal repeats to explore the relative contribution of reverse transcriptase and RNA polymerase II to viral mutagenesis. J Biol Chem 277, 38053-38061, doi:10.1074/jbc.M204774200 (2002). [CrossRef] [PubMed] [Google Scholar]
  61. Rodriguez, M. A. et al. Genetic and functional characterization of the LTR of HIV-1 subtypes A and C circulating in India. AIDS Res Hum Retroviruses 23, 1428-1433, doi:10.1089/aid.2007.0152 (2007). [CrossRef] [PubMed] [Google Scholar]
  62. Hu, W. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci U S A 111, 11461-11466, doi:10.1073/pnas.1405186111 (2014). [CrossRef] [PubMed] [Google Scholar]
  63. Kaminski, R. et al. Excision of HIV-1 DNA by gene editing: a proof-of-concept in vivo study. Gene Ther 23, 690-695, doi:10.1038/gt.2016.41 (2016). [CrossRef] [PubMed] [Google Scholar]
  64. Soriano, V. Hot News: Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure. AIDS Rev 19, 167-172 (2017). [Google Scholar]
  65. Saayman, S., Ali, S. A., Morris, K. V. & Weinberg, M. S. The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther 15, 819-830, doi:10.1517/14712598.2015.1036736 (2015). [PubMed] [Google Scholar]
  66. Bleul, C. C., Wu, L., Hoxie, J. A., Springer, T. A. & Mackay, C. R. The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proc Natl Acad Sci U S A 94, 1925-1930, doi:10.1073/pnas.94.5.1925 (1997). [CrossRef] [PubMed] [Google Scholar]
  67. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635-638, doi:10.1038/382635a0 (1996). [PubMed] [Google Scholar]
  68. Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722-725, doi:10.1038/382722a0 (1996). [PubMed] [Google Scholar]
  69. Allers, K. et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood 117, 2791-2799, doi:10.1182/blood-2010-09-309591 (2011). [Google Scholar]
  70. Hutter, G. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360, 692-698, doi:10.1056/NEJMoa0802905 (2009). [Google Scholar]
  71. Biti, R. et al. HIV-1 infection in an individual homozygous for the CCR5 deletion allele. Nat Med 3, 252-253, doi:10.1038/nm0397-252 (1997). [CrossRef] [PubMed] [Google Scholar]
  72. Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31, 230-232, doi:10.1038/nbt.2507 (2013). [CrossRef] [PubMed] [Google Scholar]
  73. Zimmerman, P. A. et al. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 3, 23-36 (1997). [CrossRef] [PubMed] [Google Scholar]
  74. Holt, N. et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28, 839-847, doi:10.1038/nbt.1663 (2010). [CrossRef] [PubMed] [Google Scholar]
  75. Perez, E. E. et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26, 808-816, doi:10.1038/nbt1410 (2008). [CrossRef] [PubMed] [Google Scholar]
  76. Xu, L. et al. CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo. Mol Ther 25, 1782-1789, doi:10.1016/j.ymthe.2017.04.027 (2017). [CrossRef] [PubMed] [Google Scholar]
  77. Xiao, Q., Guo, D. & Chen, S. Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Front Cell Infect Microbiol 9, 69, doi:10.3389/fcimb.2019.00069 (2019). [CrossRef] [PubMed] [Google Scholar]
  78. Lino, C. A., Harper, J. C., Carney, J. P. & Timlin, J. A. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25, 1234-1257, doi:10.1080/10717544.2018.1474964 (2018). [CrossRef] [PubMed] [Google Scholar]
  79. Xu, C. L., Ruan, M. Z. C., Mahajan, V. B. & Tsang, S. H. Viral Delivery Systems for CRISPR. Viruses 11, doi:10.3390/v11010028 (2019). [Google Scholar]
  80. Wang, W. et al. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 9, e115987, doi:10.1371/journal.pone.0115987 (2014). [Google Scholar]
  81. Cradick, T. J., Fine, E. J., Antico, C. J. & Bao, G. CRISPR/Cas9 systems targeting beta-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res 41, 9584-9592, doi:10.1093/nar/gkt714 (2013). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.