Open Access
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 02017
Number of page(s) 6
Section BFS2020-Biotechnology and Food Science
Published online 27 January 2021
  1. Tanaka, Y.; Gleason, C. E.; Tran, P. O. T.; Harmon, J. S.; Robertson, R. P. Prevention of Glucose Toxicity in HIT-T15 Cells and Zucker Diabetic Fatty Rats by Antioxidants. Proc Natl Acad Sci USA 1999, 6. [Google Scholar]
  2. Chatham, J. C.; Seymour, A.-M. L. Cardiac Carbohydrate Metabolism in Zucker Diabetic Fatty Rats. Cardiovasc. Res. 2002, 55 (1), 104–112. [CrossRef] [PubMed] [Google Scholar]
  3. Klein, M. S.; Shearer, J. Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application. J. Diabetes Res. 11. [Google Scholar]
  4. Henry, C. S. High-Throughput Generation, Optimization and Analysis of Genome-Scale Metabolic Models. Nat. Biotechnol. 2010, 28 (9), 8. [Google Scholar]
  5. Szabadi, K.; Pinter, E.; Reglodi, D.; Gabriel, R. Neuropeptides, Trophic Factors, and Other Substances Providing Morphofunctional and Metabolic Protection in Experimental Models of Diabetic Retinopathy. 121. [Google Scholar]
  6. Yokoi, N.; Hoshino, M.; Hidaka, S.; Yoshida, E.; Beppu, M.; Hoshikawa, R.; Sudo, K.; Kawada, A.; Takagi, S.; Seino, S. A Novel Rat Model of Type 2 Diabetes: The Zucker Fatty Diabetes Mellitus ZFDM Rat. J. Diabetes Res. 2013, 2013, 1–9. [Google Scholar]
  7. Lewis, N. E.; Nagarajan, H.; Palsson, B. O. Constraining the Metabolic Genotype–Phenotype Relationship Using a Phylogeny of in Silico Methods. Nat. Rev. Microbiol. 2012, 10 (4), 291–305. [CrossRef] [PubMed] [Google Scholar]
  8. Zhou, B.; Xiao, J. F.; Tuli, L.; Ressom, H. W. LC-MS-Based Metabolomics. Mol BioSyst 2012, 8 (2), 470–481. [Google Scholar]
  9. Podwojski, K.; Fritsch, A.; Chamrad, D. C.; Paul, W.; Sitek, B.; Stühler, K.; Mutzel, P.; Stephan, C.; Meyer, H. E.; Urfer, W.; Ickstadt, K.; Rahnenführer, J. Retention Time Alignment Algorithms for LC/MS Data Must Consider Non-Linear Shifts. 7. [Google Scholar]
  10. Friedrich, N. Metabolomics in Diabetes Research. 33. [Google Scholar]
  11. Coughlan, K. A.; Ruderman, N. B.; Valentine, R. J.; Saha, A. K. AMPK Activation: A Therapeutic Target for Type 2 Diabetes? 13. [Google Scholar]
  12. Chou, K.-C. Molecular Therapeutic Target for Type-2 Diabetes. J. Proteome Res. 2004, 3 (6), 1284–1288. [CrossRef] [PubMed] [Google Scholar]
  13. Kahn, K.; Serfozo, P.; Tipton, P. A. Identification of the True Product of the Urate Oxidase Reaction. J. Am. Chem. Soc. 1997, 119 (23), 5435–5442. [Google Scholar]
  14. Xi, H.; Schneider, B. L.; Reitzer, L. Purine Catabolism in Escherichia Coli and Function of Xanthine Dehydrogenase in Purine Salvage. J. Bacteriol. 2000, 182 (19), 5332–5341. [CrossRef] [PubMed] [Google Scholar]
  15. Elshafei, A. M.; Mohamed, L. A.; Ali, N. H. Deamination of Adenosine by Extracts of Penicillium Politans NRC-510. J. Basic Microbiol. 2005, 45 (2), 115–124. [CrossRef] [PubMed] [Google Scholar]
  16. Yoneyama, Y.; Sawa, R.; Suzuki, S.; Otsubo, Y.; Araki, T. Serum Adenosine Deaminase Activity in Women with Hyperemesis Gravidarum. Clin. Chim. Acta 2002, 5. [Google Scholar]
  17. Ashihara, H.; Stasolla, C.; Loukanina, N.; Thorpe, T. A. Purine Metabolism during White Spruce Somatic Embryo Development: Salvage of Adenine, Adenosine, and Inosine. Plant Sci. 2001, 11. [Google Scholar]
  18. Pope, S. D.; Chen, L.-L.; Stewart, V. Purine Utilization by Klebsiella Oxytoca M5al: Genes for Ring-Oxidizing and -Opening Enzymes. J. Bacteriol. 2009, 191 (3), 1006–1017. [CrossRef] [PubMed] [Google Scholar]
  19. McGee, M. M.; Greengard, O.; Knox, W. E. Liver Phenylalanine Hydroxylase Activity in Relation to Blood Concentrations of Tyrosine and Phenylalanine in the Rat. Biochem. J. 1972, 127 (4), 675–680. [CrossRef] [PubMed] [Google Scholar]
  20. Stanley, J. C.; Fisher, M. J.; POGSONt, C. I. The Metabolism of L-Phenylalanine and L-Tyrosine by Liver Cells Isolated from Adrenalectomized Rats and from Streptozotocin-Diabetic Rats. 1985, 228, 7. [Google Scholar]
  21. Moller, N.; Meek, S.; Bigelow, M.; Andrews, J.; Nair, K. S. The Kidney Is an Important Site for in Vivo Phenylalanine-to-Tyrosine Conversion in Adult Humans: A Metabolic Role of the Kidney. Proc. Natl. Acad. Sci. 2000, 97 (3), 1242–1246. [CrossRef] [Google Scholar]
  22. Womack, M.; Rose, W. C. Feeding Experiments with Mixtures of Highly Purified Amino Acids. 6. The Relation of Phenylalanine and Tyrosine to Growth. J. Biol. Chem. 1934, 107, 449–458. [Google Scholar]
  23. Zhou, Y.; Goodenbour, J. M.; Godley, L. A.; Wickrema, A.; Pan, T. High Levels of TRNA Abundance and Alteration of TRNA Charging by Bortezomib in Multiple Myeloma. Biochem. Biophys. Res. Commun. 2009, 385 (2), 160–164. [Google Scholar]
  24. Raina, M.; Ibba, M. TRNAs as Regulators of Biological Processes. Front. Genet. 14. [Google Scholar]
  25. Floc’h, N. L.; Otten, W.; Merlot, E. Tryptophan Metabolism, from Nutrition to Potential Therapeutic Applications. 11. [Google Scholar]
  26. Woolf, L. I. Inherited Metabolic Disorders: Errors of Phenylalanine and Tyrosine Metabolism. In Advances in Clinical Chemistry; Sobotka, H., Stewart, C. P., Eds.; Elsevier, 1963; Vol. 6, pp 97–230. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.