Open Access
E3S Web Conf.
Volume 233, 2021
2020 2nd International Academic Exchange Conference on Science and Technology Innovation (IAECST 2020)
Article Number 02024
Number of page(s) 5
Section BFS2020-Biotechnology and Food Science
Published online 27 January 2021
  1. Hao, X., Zhang, G., & Ma, S. (2016). Deep learning. International Journal of Semantic Computing, 10(03), 417-439. [Google Scholar]
  2. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., & Ghafoorian, M., et al. (2017). A survey on deep learning in medical image analysis. Medical Image Analysis, 42(9), 60-88. [CrossRef] [PubMed] [Google Scholar]
  3. Zhao, Z., Chen, W., Wu, X., Chen, P. C. Y., & Liu, J. (2017). Lstm network: a deep learning approach for short-term traffic forecast. Iet Intelligent Transport Systems, 11(2), 68-75. [CrossRef] [Google Scholar]
  4. Shrawan, R., Shloak, G., & Basant, A. (2018). Devanagri character recognition model using deep convolution neural network. Journal of Statistics & Management Systems, 21(4), 593-599. [CrossRef] [Google Scholar]
  5. Jeong, J., Lee, D., Jung, H., & Yang, H. (2020). Automatic convolution neural network model compression framework for resource-constrained embedded systems. Journal of KIISE, 47(2), 136-146. [CrossRef] [Google Scholar]
  6. Mari, K., & Ganesh, V. (2020). Multi-labelled emotion with intensity-based sentiment classification model in tweets using convolution neural networks. International Journal of Advanced Trends in Computer ence and Engineering, 9(2), 1650-1656. [Google Scholar]
  7. Santos, M. A. D., Vveinhardt, J., Calabuig, F., & Francisco Javier Montoro Ríos. (2017). Involvement and image transfer in sports sponsorship. Engineering Economics, 27(1), 78-89. [Google Scholar]
  8. Bachleda, C., Fakhar, A., & Elouazzani, Z. (2016). Quantifying the effect of sponsor awareness and image on the sports involvement–purchase intention relationship. Sport Management Review, 19(3), 293-305. [CrossRef] [Google Scholar]
  9. Zhu, K., & Ying, L. (2016). Information source detection in the sir model: a sample path-based approach. IEEE/ACM Transactions on Networking, 24(1), 408-421. [CrossRef] [Google Scholar]
  10. Gupta, N., Pillai, G. V., & Ari, S. (2018). Change detection in landsat images based on local neighbourhood information. Image Processing, IET, 12(11), 2051-2058. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.